Znajdź q i a1 ciągu geometrycznego, w którym
a
an = a1 * q^(n - 1)
a5 = a1 * q^4
a4 = a1 * q^3
a2 = a1 * q
a1 * q^4 - a1 = 15
a1 * q^3 - (a1 * q) = 6
a1(q^4 - 1) = 15
a1 * q^3 - a1 * q = 6
a1(q² - 1)(q² + 1) = 15
a1*q(q² - 1) = 6 /:a1q
(q² - 1) = 6 /a1q
a1 * 6/a1q (q² + 1) = 15
6/q (q² + 1) = 15 /*q
6(q² + 1) = 15q
6q² - 15q + 6 = 0 /:3
2q² - 5q + 2 = 0
Δ = 25 - 16 = 9
√Δ = 3
q1 = (5 - 3)/4 = 2/4 = 1/2
q2 = (5 + 3)/4 = 8/4 = 2
q1 = 1/2 lub q2 = 2
(q² - 1) = 6 /a1q (q² - 1) = 6 /a1q
((1/2)² - 1) = 6 /a1*1/2 (2² - 1) = 6 /a1*2
(1/4 - 1) = 12/a1 (4 - 1) = 3/a1
-3/4 = 12/a1 3/1 = 3/a1
-3a1 = 48 3a1 = 3
a1 = -16 a1 =1
odp. a1 = -16 to q = 1/2 lub a1 = 1 to q = 2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
an = a1 * q^(n - 1)
a5 = a1 * q^4
a4 = a1 * q^3
a2 = a1 * q
a1 * q^4 - a1 = 15
a1 * q^3 - (a1 * q) = 6
a1(q^4 - 1) = 15
a1 * q^3 - a1 * q = 6
a1(q² - 1)(q² + 1) = 15
a1*q(q² - 1) = 6 /:a1q
a1(q² - 1)(q² + 1) = 15
(q² - 1) = 6 /a1q
a1 * 6/a1q (q² + 1) = 15
6/q (q² + 1) = 15 /*q
6(q² + 1) = 15q
6q² - 15q + 6 = 0 /:3
2q² - 5q + 2 = 0
Δ = 25 - 16 = 9
√Δ = 3
q1 = (5 - 3)/4 = 2/4 = 1/2
q2 = (5 + 3)/4 = 8/4 = 2
q1 = 1/2 lub q2 = 2
(q² - 1) = 6 /a1q (q² - 1) = 6 /a1q
((1/2)² - 1) = 6 /a1*1/2 (2² - 1) = 6 /a1*2
(1/4 - 1) = 12/a1 (4 - 1) = 3/a1
-3/4 = 12/a1 3/1 = 3/a1
-3a1 = 48 3a1 = 3
a1 = -16 a1 =1
odp. a1 = -16 to q = 1/2 lub a1 = 1 to q = 2