Znajdź pierwiastki wielomianu W(x).
a)
b)
c)
Wskazówka. Przedstaw jeden z wyrazów wielomianu jako sumę dwóch jednomianów.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
W(x) = x⁴ - 4x³ + 8x² -24 x + 12 =
= x⁴ - 4x³ + 2x² + 6x² - 24x + 12 =
= x² (x² - 4x +2) + 6(x² - 4x +2 ) =
= (x² + 6)(x² -4x + 2)
---------------------------
x² + 6 > 0 dla dowolnej liczby x ∈ R
x² - 4x + 2 = 0
Δ = (-4)² -4*1*2 = 16 - 8 = 8 = 4*2
√Δ = 2√2
x1 = [4 - 2√2]/2 = 2 - √2
x2 = [4 + 2√2]/2 = 2 + √2
Odp. 2 - √2 ; 2 + √2
=============================
b)
W(x) = x⁴ - 3x³ + 5x² - 3x + 4 =
= x⁴ - 3 x³ + 4x² + x² - 3x + 4 =
= x²(x² -3x + 4) + (x² -3x + 4) =
= (x² + 1)( x² -3x +4) = 0 <=> x² - 3x + 4 = 0
bo
x² + 1 > 0 dla dowolnej liczby x ∈ R.
Δ = (-3)² - 4*1*4 = 9 - 16 = -7 < 0
Ten wielomian nie ma pierwiastków rzeczywistych.
===========================================
c)
W(x) = x⁴ + 3x³- x² -6x - 2 =
= x⁴ + 3x³ + x² - 2x² - 6x - 2 =
= x²(x²+3x + 1) - 2(x² + 3x + 1) =
= (x²-2)(x² +3x + 1) =
= (x + √2)(x - √2)(x² + 3x + 1) = 0 <=>
<=> x +√2 = 0 ∨ x - √2 = 0 ∨ x²+3x+1 = 0 <=>
<=> x = - √2 ∨ x = √2 ∨ x = [-3 -√5]/2 ∨ x = [ -3 + √5]/2
=========================================================
bo
Δ = 3²-4*1*1 = 9 - 4 = 5
√Δ = √5
x = [ -3 - √5]/2 ∨ x = [ -3 + √5]/2
----------------------------------------------------------------------------------