" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
pochodna:
g'(x) = -3x² + 9x - 6 D' = R
Δ = 81 - 72 = 9, √Δ =3, x1 = -9-3/-6 = 2, x2 = -9+3/-6 = 1
g'(x) < 0 dla x∈(-∞, 1) U (2, +∞) (g(x) malejąca) (1)
g'(x0 > 0 dla x∈(1,2) (g(x) rosnąca) (2)
Z tych 3 warunków wynika, że: (3)
g(x) dla x=1 ma minimum lokalne g(1) = -2,5
g(x) dla x=2 ma maksimum lokalne g(2) = -2 GOTOWE!!!