Zbadaj monotoniczność ciągu an=3n+2 .
an = 3n + 2
a(n + 1) = 3(n + 1) + 2 = 3n + 3 + 2 = 3n + 5
a(n+1) - an = 3n + 5 - (3n + 2) = 3n + 5 - 3n - 2 = 3 > 0 ciąg an jest cigem rosnącym
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
an = 3n + 2
a(n + 1) = 3(n + 1) + 2 = 3n + 3 + 2 = 3n + 5
a(n+1) - an = 3n + 5 - (3n + 2) = 3n + 5 - 3n - 2 = 3 > 0 ciąg an jest cigem rosnącym