Zastosować odpowiedni wzór trzeba :)
Dam naj.
(a + b)² = a² + 2ab + b²
(√2 + 1)² = (√2)² + 2 * √2 * 1 + 1² = 2 + 2√2 + 1 = 3 + 2√2
(a - b)² = a² - 2ab + b²
(√7 - 3)² = (√7)² - 2 * √7 * 3 + 3² = 7 - 2√7 + 9 = 16 - 2√7
(√5 - √3)² = (√5)² - 2 * √5 * √3 + √3 ² = 5 - 2√15 + 3 = 8 - 2√15
(√27 + √23)² = (√27)² + 2 * √27 * √23 + √23 ² = 27 + 2√(27 * 23) + 23 = 50 + 2 * 3 √69 = 50 + 6√69
.... = 9² - ( √8x )² = 81 - 8x²
.... = [ - (2x + 11) ]² = (-1)² * (2x + 11)² = 1 * ( 4x² + 44x + 121) = 4x² + 44x + 121
(√2+1)² = (√2)²+2*√2*1+1²= 2+2√2+1= 3+2√2
(√7-3)²= (√7)²-2*√7*3+3²= 7-6√7+9= 16-6√7
(√5-√3)² = (√5)²-2√5*√3+(√3)²= 5-2√15+3=8-2√15
(√27+√23)²= (√27)²+2*√27*√23+(√23)²= 27+2√621+23=50+2√621
(9-√8x)(9+√8x)=9²-(√8x)²=81-8x²
(-2x-11)²= (-2x)²-2*(-2x)*11+11²= 4x²+44x+121
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
(a + b)² = a² + 2ab + b²
(√2 + 1)² = (√2)² + 2 * √2 * 1 + 1² = 2 + 2√2 + 1 = 3 + 2√2
(a - b)² = a² - 2ab + b²
(√7 - 3)² = (√7)² - 2 * √7 * 3 + 3² = 7 - 2√7 + 9 = 16 - 2√7
(√5 - √3)² = (√5)² - 2 * √5 * √3 + √3 ² = 5 - 2√15 + 3 = 8 - 2√15
(√27 + √23)² = (√27)² + 2 * √27 * √23 + √23 ² = 27 + 2√(27 * 23) + 23 = 50 + 2 * 3 √69 = 50 + 6√69
.... = 9² - ( √8x )² = 81 - 8x²
.... = [ - (2x + 11) ]² = (-1)² * (2x + 11)² = 1 * ( 4x² + 44x + 121) = 4x² + 44x + 121
(√2+1)² = (√2)²+2*√2*1+1²= 2+2√2+1= 3+2√2
(√7-3)²= (√7)²-2*√7*3+3²= 7-6√7+9= 16-6√7
(√5-√3)² = (√5)²-2√5*√3+(√3)²= 5-2√15+3=8-2√15
(√27+√23)²= (√27)²+2*√27*√23+(√23)²= 27+2√621+23=50+2√621
(9-√8x)(9+√8x)=9²-(√8x)²=81-8x²
(-2x-11)²= (-2x)²-2*(-2x)*11+11²= 4x²+44x+121