a)
f(x) = - x^2 - 8x + 5
a = -1
b = -8
c = 5
delta = b^2 - 4ac = (- 8)^2 - 4*(-1)*5 = 64 + 20 = 84 = 4*21
p (delty ) = 2 p(21)
x1 = [ -b - p (delty)]/(2a)
x1 = [ 8 - 2 p(21)]/ (-2) = -4 + p(21)
x2 = [ - b + p(delty)]/(2a)
x2 = [ 8 + 2 p(21)]/(-2) = -4 - p(21)
postać iloczynowa
f(x) = a*(x -x1)*(x -x2)
f(x) = -1*(x + 4 - p(21))*( x + 4 + p(21))
Odp. f(x) = - ( x + 4 - p(21))*( x + 4 + p(21))
=======================================
p = -b/(2a) = 8/ (-2) = - 4
q = - delta/ (4a) = -84/(- 4) = 21
postać kanoniczna
f(x) = a*(x -p)^2 + q
f(x) = -1 *( x - (-4))^2 + 21
Odp. f(x) = - (x + 4)^2 + 21
W = ( p; q) = ( -4; 21 ) - wierzchołek paraboli
Miejsca zerowe: x1; x2
==========================================
b)
f(x) = x^2 - 3x + 2
delta = (-3)^2 - 4*1*2 = 9 - 8 = 1
x1 = [3 -1]/2 = 1
x2 = [ 3 +1]/2 = 2
f(x) = (x - 1)*(x -2) - postać iloczynowa
======================
p = 3/2 = 1,5
q = -1/4
f(x) = ( x - 1,5)^2 - 1/4 lub f(x) = ( x -1,5)^2 - 0,25 p. kanoniczna
W = ( p; q ) = (1,5 ; - 1/4) - wierzchołek paraboli
miejsca zerowe: 1 oraz 2
==============================================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
f(x) = - x^2 - 8x + 5
a = -1
b = -8
c = 5
delta = b^2 - 4ac = (- 8)^2 - 4*(-1)*5 = 64 + 20 = 84 = 4*21
p (delty ) = 2 p(21)
x1 = [ -b - p (delty)]/(2a)
x1 = [ 8 - 2 p(21)]/ (-2) = -4 + p(21)
x2 = [ - b + p(delty)]/(2a)
x2 = [ 8 + 2 p(21)]/(-2) = -4 - p(21)
postać iloczynowa
f(x) = a*(x -x1)*(x -x2)
f(x) = -1*(x + 4 - p(21))*( x + 4 + p(21))
Odp. f(x) = - ( x + 4 - p(21))*( x + 4 + p(21))
=======================================
p = -b/(2a) = 8/ (-2) = - 4
q = - delta/ (4a) = -84/(- 4) = 21
postać kanoniczna
f(x) = a*(x -p)^2 + q
f(x) = -1 *( x - (-4))^2 + 21
Odp. f(x) = - (x + 4)^2 + 21
W = ( p; q) = ( -4; 21 ) - wierzchołek paraboli
Miejsca zerowe: x1; x2
==========================================
b)
f(x) = x^2 - 3x + 2
delta = (-3)^2 - 4*1*2 = 9 - 8 = 1
x1 = [3 -1]/2 = 1
x2 = [ 3 +1]/2 = 2
f(x) = (x - 1)*(x -2) - postać iloczynowa
======================
p = 3/2 = 1,5
q = -1/4
f(x) = ( x - 1,5)^2 - 1/4 lub f(x) = ( x -1,5)^2 - 0,25 p. kanoniczna
W = ( p; q ) = (1,5 ; - 1/4) - wierzchołek paraboli
miejsca zerowe: 1 oraz 2
==============================================