ZADANIE W ZAŁĄCZNIKU, rozwiązania z obliczeniami.
a)
a n = (-1)^n * (n² + 1)
a5 = (-1)^5 * (5² + 1) = (-1) * (25 + 1) = (-1) * 26 = - 26
a (n + 1) = (-1)^(n + 1) * [ (n + 1)² + 1 ] = (-1)^n * (-1)^1 * (n² + 2n + 1 + 1) = (-1)^n * (-1) * (n² + 2n + 2) = - (-1)^n * (n² + 2n + 2)
a (2n) = (-1)^(2n) * [ (2n)² + 1 ] = 1^n * (4n² + 1) = 1 * (4n² + 1) = 4n² + 1
b)
a 8 = (-1)^8 * (8² + 1) = 1 * (64 + 1) = 1 * 65 = 65
a (n -2) = (-1)^(n - 2) * [ (n - 2)² + 1 ] = (-1)^n * (-1)^(-2) * (n² - 4n + 4 + 1) = (-1)^n * (n² - 4n + 5)
a (2n + 2) = (-1)^(2n + 2) * [ (2n + 2)² + 1 ] = (-1)^2n * (-1)^2 * (4n² + 8n + 4 + 1) = 1^n * 1 * (4n² + 8n + 5) = 1^n * (4n² + 8n + 5)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
a n = (-1)^n * (n² + 1)
a5 = (-1)^5 * (5² + 1) = (-1) * (25 + 1) = (-1) * 26 = - 26
a (n + 1) = (-1)^(n + 1) * [ (n + 1)² + 1 ] = (-1)^n * (-1)^1 * (n² + 2n + 1 + 1) = (-1)^n * (-1) * (n² + 2n + 2) = - (-1)^n * (n² + 2n + 2)
a (2n) = (-1)^(2n) * [ (2n)² + 1 ] = 1^n * (4n² + 1) = 1 * (4n² + 1) = 4n² + 1
b)
a 8 = (-1)^8 * (8² + 1) = 1 * (64 + 1) = 1 * 65 = 65
a (n -2) = (-1)^(n - 2) * [ (n - 2)² + 1 ] = (-1)^n * (-1)^(-2) * (n² - 4n + 4 + 1) = (-1)^n * (n² - 4n + 5)
a (2n + 2) = (-1)^(2n + 2) * [ (2n + 2)² + 1 ] = (-1)^2n * (-1)^2 * (4n² + 8n + 4 + 1) = 1^n * 1 * (4n² + 8n + 5) = 1^n * (4n² + 8n + 5)