zadanie 1 wykonaj dzielenie wielomianów:
(x^{4} - 3x^{3} - x^{2} + 2x + 6) : (x - 2)=
zadanie2 Nie wykonując ilorazu podaj resztę z dzielenia:
x^{5} - 4x^{3} - 3x^{2} - 2x - 5 przez x + 1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
z.1
( x^4 - 3 x^3 - x^2 + 2x + 6 ) : ( x - 2) = x^3 - x^2 - 3 x - 4
- x^4 + 2 x^3
-------------------------
...... - x^3 - x^2
........ x^3 + 2x^2
-------------------------------
............. - 3 x^2 + 2 x
............. . 3 x^2 - 6 x
-------------------------------
...................... - 4 x + 6
.........................4 x - 8
-------------------------------------
............................ - 2
z.2
R(x) = W(-1) = (-1)^5 - 4*(-1)^3 - 3*(-1)^2 -2*(-1) - 5 =
= -1 + 4 - 3 + 2 - 5 = - 3
=====================
1.
-------------------------
...... ...
........ ..
-------------------------------
................
................ .
-------------------------------
.........................
...........................
-------------------------------------
...............................
spr.
2.
R(x) = W(-1)
R(x) = -3