" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
x³ - 2x² - 9x + 18 = 0
x²(x - 2) - 9(x - 2) = 0
(x² - 9)(x - 2) = 0
x² - 9 = 0 lub x - 2 = 0
(x - 3)(x + 3) = 0 lub x - 2 = 0
x = 3 lub x = - 3 lub x = 2
b)
(x + 1)/(x - 2) = 2 założenie x - 2 ≠ 0 , x ≠ 2
x +1 = 2(x -2)
x + 1 = 2x - 4
x - 2x = - 4 - 1
- x = - 5
x = 5
c)
(3 - x)/(2 + x) = (7 - 3x)/(5 + x) założenie 2 + x ≠ 0 i 5 + x ≠ 0
x ≠ - 2 i x ≠ - 5
(3 - x)(5 + x) = (2 + x)(7 - 3x)
15 - 5x + 3x - x² = 14 + 7x - 6x - 3x²
- x² + 3x² -2x - x + 15 - 14 = 0
2x² - 3x + 1 = 0
a = 2
b = - 3
c = 1
Δ = b² - 4ac = 9 - 4 * 2 * 1 = 9 - 8 = 1
√Δ = √1 = 1
x₁ = (- b - √Δ)/2a = (3 - 1)/4 = 2/4 = 1/2
x₂ = (- b + √Δ)/2a = (3 + 1)/4 = 4/4 = 1
zad 2
a)
x² - 6x ≠ 0
x(x - 6) ≠ 0
x ≠ 0 i x ≠ 6
D = R \ (0 , 6)
b)
(x + 2)² ≠ 0
(x + 2)(x + 2) ≠ 0
x ≠ - 2
D = R \ (- 2)
zad 3
a)
1/x - 3/(3x - 2) założenie x ≠ 0 i 3x - 2 ≠ 0
x ≠ 0 i x ≠ 2/3
D = R \ (0 , 2/3)
(3x - 2 - 3)/(x(3x - 2) = (3x - 5)/x(3x - 2)
b)
4x/(x - 1) - (x + 3)/x + 5 założenie x - 1 ≠ 0 i x≠0
x ≠ 1 i x ≠ 0
D = R \ (0 , 1)
4x * x - (x - 1)(x + 3) + 5x(x -1) = 4x² - (x² - x + 3x -3) +5x² -5x =
4x² - x² - 2x + 3 + 5x² - 5x = 8x² - 7x + 3