Zadania w załączniku
z.2
d)
( 1 - 2x)^2 = 2x - x^2 + 1
1 -4x + 4 x^2 = 2x - x^2 + 1
4 x^2 + x^2 - 4x - 2x + 1 - 1 = 0
5 x^2 - 6x = 0
x*( 5 x - 6) = 0
x = 0 lub 5x - 6 = 0
x = 0 lub 5x = 6
x = 0 lub x = 6/5
===================
e )
3 x^2 - x - 2 > 0
delta = (-1)^2 - 4*3*(-2) = 1 + 24 = 25
p( delty) = 5
x1 = [ 1 - 5]/ 6 = -4/6 = - 2/3
x2 = [ 1 + 5]/6 = 6/6 = 1
a = 3 > 0 - ramiona paraboli skierowane są ku górze, zatem
3 x^2 - x - 2 > 0 dla x < - 2/3 lub x > 1
( -oo; - 2/3) u ( 1 ; + oo )
===========================
f)
4 x^2 < = 1 / : 4
x^2 < = 1/4
x^2 - 1.4 < = 0
( x - 1/2)*(x + 1/2) < = 0
x należy do < -1/2; 1/2 >
=============================
z.3
f(x) = 2*( x + 1)^2 - 3
< - 2; 2 >
Mamy
p = - 1
a = 2 > 0 , zatem dla x < -1 funkcja jest malejąca , a dla x > - 1 funkcja jest
rosnąca.
Mamy więc
y min = q = - 3
================
y max = f(2) = 2*( 2 + 1)^2 - 3 = 2* 3^2 - 3 = 2*9 - 3 = 18 - 3 = 15
==========================================================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
z.2
d)
( 1 - 2x)^2 = 2x - x^2 + 1
1 -4x + 4 x^2 = 2x - x^2 + 1
4 x^2 + x^2 - 4x - 2x + 1 - 1 = 0
5 x^2 - 6x = 0
x*( 5 x - 6) = 0
x = 0 lub 5x - 6 = 0
x = 0 lub 5x = 6
x = 0 lub x = 6/5
===================
e )
3 x^2 - x - 2 > 0
delta = (-1)^2 - 4*3*(-2) = 1 + 24 = 25
p( delty) = 5
x1 = [ 1 - 5]/ 6 = -4/6 = - 2/3
x2 = [ 1 + 5]/6 = 6/6 = 1
a = 3 > 0 - ramiona paraboli skierowane są ku górze, zatem
3 x^2 - x - 2 > 0 dla x < - 2/3 lub x > 1
( -oo; - 2/3) u ( 1 ; + oo )
===========================
f)
4 x^2 < = 1 / : 4
x^2 < = 1/4
x^2 - 1.4 < = 0
( x - 1/2)*(x + 1/2) < = 0
x należy do < -1/2; 1/2 >
=============================
z.3
f(x) = 2*( x + 1)^2 - 3
< - 2; 2 >
Mamy
p = - 1
a = 2 > 0 , zatem dla x < -1 funkcja jest malejąca , a dla x > - 1 funkcja jest
rosnąca.
Mamy więc
y min = q = - 3
================
y max = f(2) = 2*( 2 + 1)^2 - 3 = 2* 3^2 - 3 = 2*9 - 3 = 18 - 3 = 15
==========================================================