" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)oblicz długośćstron AB i BC i łuków AB i BC
∠A=45º R = 8
|BC|/sin(∠A) = 2R
|BC|/sin(45º) = 2*8 = 16
|BC| = 16 * sin(45º) = 16*(√2/2) = 8*√2 lub |BC| ≈ 11,31
|AB|=|AC|
|BC|/2 = |AB|*sin(∠A/2)
|AB| = |BC|/(2sin(∠A/2)) = (8*√2)/(2sin(45º/2)) = (4√2)/sin(45º/2)
sin(45º/2) = √((1 - cos45º)/2) = √((1 - cos45º)/2) = √((1 - √2/2)/2) = √(0,5 - 0,25√2)
|AB| = 4√2/√(0,5 - 0,25√2) = 8√2/√(2 - √2) = 8√2√(2 - √2)/(2 - √2) =
= 8(2 + √2)√2√(2 - √2)/2 = 4(2 + √2)√2√(2 - √2) = 8(√2 + 1)√(2 - √2) =
= 8√(√2 + 1)²(2 - √2)= 8√(√2+2)
|AB| =8√(√2+2) lub |AB| ≈ 14,78
90º = 2*45º kat dla BC
135º = (360º - 90º)/2 kat dla AB
luk BC = π*R*90º/180º = 4π
luk AB = π*R*135º/180º = 6π
b)oblicz pole zacieniowanego odcinka koła
P = R²(π*α/180º - sinα)/2
α = 2*45º = 90º
P = 8²(π*90º/180º - sin(90º))/2 = 64(π/2 - 1)/2 = 16*(π - 2)
c)oblicz obwód trójkąta ABC
O = 8*√2 + 2*8√(√2+2) = 8*√2 + 16√(√2+2) lub O ≈ 40,87
O = 11,31 + 2*14,78 ≈ 40,87