x(x-2)>3(x-2)
(1-3x)²+3x-4x²<9
i tu w takim nawiasie razem(czyli w takiej klamerce) uklad rownan:
{y=x²+x+1
y=-6x+9
x(x - 2) > 3(x - 2)
x² - 2x > 3x - 6
x² - 2x - 5x + 6 > 0
x² - 7x + 6 > 0
Δ = b² - 4ac = (-7)² - 4 × 6 × 1 = 49 - 24 = 25
√Δ = √25 = 5
x₁ = (-b - √Δ) ÷ 2a = (7 - 5) ÷ 2 = 2 ÷ 2 = 1
x₂ = (-b + √Δ) ÷ 2a = (7 + 5) ÷ 2 = 12 ÷ 2 = 6
a > 0
x² - 7x + 6 > 0 <=> x ∈ (-∞ ; 1) U (6 ; ∞)
(1 - 3x)² + 3x - 4x² < 9
1 - 6x + 9x² + 3x - 4x² - 9 > 0
5x² - 3x - 8 > 0
Δ = b² - 4ac = (-3)² - 4 × 5 × (-8) = 9 + 160 = 169
√Δ = √169 = 13
x₁ = (-b - √Δ) ÷ 2a = (3 - 13) ÷ 2 × 5 = -10 ÷ 10 = -1
x₂ = (-b + √Δ) ÷ 2a = (3 + 13) ÷ 2 × 5 = 16 ÷ 10 = 1⅗
(1 - 3x)² + 3x - 4x² < 9 <=> x ∈ (-∞ ; -1) U (1⅗ ; ∞)
y = x² + x + 1
y = -6x + 9
x² + x + 1 = -6x + 9
x² + x + 1 + 6x - 9 = 0
x² + 7x - 8 = 0
Δ = b² - 4ac = 7² - 4 × (-8) = 49 + 32 = 81
Δ = √81 = 9
x₁ = (-b - √Δ) ÷ 2a = (-7 - 9) ÷ 2 × 1 = -16 ÷ 2 = -8
x₂ = (-b + √Δ) ÷ 2a = (-7 + 9) ÷ 2 × 1 = 2 ÷ 2 = 1
Jeśli chodziło znalezienie punktów wspólnych dla tych funkcji to tyle. Jeśli to układ na dwie niewiadome:
y = -6 × (-8) + 9 ∨ y = -6 × 1 + 9
y = 48 + 9 ∨ y = -6 + 9
y = 57 ∨ y = 3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
x(x - 2) > 3(x - 2)
x² - 2x > 3x - 6
x² - 2x - 5x + 6 > 0
x² - 7x + 6 > 0
Δ = b² - 4ac = (-7)² - 4 × 6 × 1 = 49 - 24 = 25
√Δ = √25 = 5
x₁ = (-b - √Δ) ÷ 2a = (7 - 5) ÷ 2 = 2 ÷ 2 = 1
x₂ = (-b + √Δ) ÷ 2a = (7 + 5) ÷ 2 = 12 ÷ 2 = 6
a > 0
x² - 7x + 6 > 0 <=> x ∈ (-∞ ; 1) U (6 ; ∞)
(1 - 3x)² + 3x - 4x² < 9
1 - 6x + 9x² + 3x - 4x² - 9 > 0
5x² - 3x - 8 > 0
Δ = b² - 4ac = (-3)² - 4 × 5 × (-8) = 9 + 160 = 169
√Δ = √169 = 13
x₁ = (-b - √Δ) ÷ 2a = (3 - 13) ÷ 2 × 5 = -10 ÷ 10 = -1
x₂ = (-b + √Δ) ÷ 2a = (3 + 13) ÷ 2 × 5 = 16 ÷ 10 = 1⅗
a > 0
(1 - 3x)² + 3x - 4x² < 9 <=> x ∈ (-∞ ; -1) U (1⅗ ; ∞)
y = x² + x + 1
y = -6x + 9
x² + x + 1 = -6x + 9
x² + x + 1 + 6x - 9 = 0
x² + 7x - 8 = 0
Δ = b² - 4ac = 7² - 4 × (-8) = 49 + 32 = 81
Δ = √81 = 9
x₁ = (-b - √Δ) ÷ 2a = (-7 - 9) ÷ 2 × 1 = -16 ÷ 2 = -8
x₂ = (-b + √Δ) ÷ 2a = (-7 + 9) ÷ 2 × 1 = 2 ÷ 2 = 1
Jeśli chodziło znalezienie punktów wspólnych dla tych funkcji to tyle. Jeśli to układ na dwie niewiadome:
y = -6x + 9
y = -6 × (-8) + 9 ∨ y = -6 × 1 + 9
y = 48 + 9 ∨ y = -6 + 9
y = 57 ∨ y = 3