x^3+2x^2-5x-10=0
-x^3+6x^2-5x=0
x^3+2x^2-6x-12=0
x³+2x²-5x-10=0
x²(x+2)-5(x+2)=0
(x+2)(x²-5)=0
(x+2)(x-√5)(x+√5)=0
x=-2 ∨ x=√5 ∨ x=-√5
-x³+6x²-5x=0
x(-x²+6x-5)=0
x=0
-x²+6x-5=0
Δ=6²-4*(-1)*(-5)=36-20=16
√Δ=4
x₁=(-6+4)/-2=-2/-2=1
x₂=(-6-4)/-2=-10/-2=5
x=0 ∨ x=1 ∨ x=5
x³+2x²-6x-12=0
x²(x+2)-6(x+2)=0
(x+2)(x²-6)=0
(x+2)(x-√6)(x+√6)=0
x=-2 ∨ x=√6 ∨ x=-√6
Korzystając ze schematu Hornera-x^3+6x^2-5x=0\\ (x-1)(-x^2+5x )=0\\ (x-1)x(-2x+5)=0\\ x=1 \\ x=0\\ x=\frac{5}{2}
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
x³+2x²-5x-10=0
x²(x+2)-5(x+2)=0
(x+2)(x²-5)=0
(x+2)(x-√5)(x+√5)=0
x=-2 ∨ x=√5 ∨ x=-√5
-x³+6x²-5x=0
x(-x²+6x-5)=0
x=0
-x²+6x-5=0
Δ=6²-4*(-1)*(-5)=36-20=16
√Δ=4
x₁=(-6+4)/-2=-2/-2=1
x₂=(-6-4)/-2=-10/-2=5
x=0 ∨ x=1 ∨ x=5
x³+2x²-6x-12=0
x²(x+2)-6(x+2)=0
(x+2)(x²-6)=0
(x+2)(x-√6)(x+√6)=0
x=-2 ∨ x=√6 ∨ x=-√6
Korzystając ze schematu Hornera
-x^3+6x^2-5x=0\\ (x-1)(-x^2+5x )=0\\ (x-1)x(-2x+5)=0\\ x=1 \\ x=0\\ x=\frac{5}{2}