1. Log3 (przy podstawie) (x+2)=1
2. Log1/2 (x-2)=-2
3. Log2 (4-5/x)=1
4. Log3 (2-4/x)=2
5. Log2x-3 25=2
6. Log2x (4x-1)=2
7. Log4 (x+1)=2
Bardzo prosze o pomoc!! i z gory dziekuje:*:*: Daje naj!!
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Skorzystamy z definicji logarytmu:
Zaczynamy od założeń przy każdym:
1.
2.
3.
4.
Nie spełnia założeń - nie ma rozwiązań.
5.
x=-1 odpada, bo nie spełnia założeń.
6.
Rozwiązanie odpada, bo nie spełnia założeń. Równanie nie ma rozwiązań.
7.
1)![log_{3}(x+2)=1 \\3^{1}=x+2 \\x+2=3 \\x=3-2 \\x=1 log_{3}(x+2)=1 \\3^{1}=x+2 \\x+2=3 \\x=3-2 \\x=1](https://tex.z-dn.net/?f=log_%7B3%7D%28x%2B2%29%3D1+%5C%5C3%5E%7B1%7D%3Dx%2B2+%5C%5Cx%2B2%3D3+%5C%5Cx%3D3-2+%5C%5Cx%3D1)
2)![log_{\frac{1}{2}}(x-2)=-2 \\(\frac{1}{2})^{-2}=x-2 \\2^{2}=x-2 \\x-2=4 \\x=4+2 \\x=6 log_{\frac{1}{2}}(x-2)=-2 \\(\frac{1}{2})^{-2}=x-2 \\2^{2}=x-2 \\x-2=4 \\x=4+2 \\x=6](https://tex.z-dn.net/?f=log_%7B%5Cfrac%7B1%7D%7B2%7D%7D%28x-2%29%3D-2+%5C%5C%28%5Cfrac%7B1%7D%7B2%7D%29%5E%7B-2%7D%3Dx-2+%5C%5C2%5E%7B2%7D%3Dx-2+%5C%5Cx-2%3D4+%5C%5Cx%3D4%2B2+%5C%5Cx%3D6)
3)![log_{2}(4-\frac{5}{x})=1 \\2^{1}=4-\frac{5}{x} \\4-\frac{5}{x}=2 \\-\frac{5}{x}=2-4 \\-\frac{5}{x}=-2/\cdot x \\-2x=-5 \\x=2,5 log_{2}(4-\frac{5}{x})=1 \\2^{1}=4-\frac{5}{x} \\4-\frac{5}{x}=2 \\-\frac{5}{x}=2-4 \\-\frac{5}{x}=-2/\cdot x \\-2x=-5 \\x=2,5](https://tex.z-dn.net/?f=log_%7B2%7D%284-%5Cfrac%7B5%7D%7Bx%7D%29%3D1+%5C%5C2%5E%7B1%7D%3D4-%5Cfrac%7B5%7D%7Bx%7D+%5C%5C4-%5Cfrac%7B5%7D%7Bx%7D%3D2+%5C%5C-%5Cfrac%7B5%7D%7Bx%7D%3D2-4+%5C%5C-%5Cfrac%7B5%7D%7Bx%7D%3D-2%2F%5Ccdot+x+%5C%5C-2x%3D-5+%5C%5Cx%3D2%2C5)
4)![log_{3}(2-\frac{4}{x})=2 \\3^{2}=2-\frac{4}{x} \\2-\frac{4}{x}=9 \\-\frac{4}{x}=9-2 \\-\frac{4}{x}=7 \\7x=-4 \\x=-\frac{4}{7} log_{3}(2-\frac{4}{x})=2 \\3^{2}=2-\frac{4}{x} \\2-\frac{4}{x}=9 \\-\frac{4}{x}=9-2 \\-\frac{4}{x}=7 \\7x=-4 \\x=-\frac{4}{7}](https://tex.z-dn.net/?f=log_%7B3%7D%282-%5Cfrac%7B4%7D%7Bx%7D%29%3D2+%5C%5C3%5E%7B2%7D%3D2-%5Cfrac%7B4%7D%7Bx%7D+%5C%5C2-%5Cfrac%7B4%7D%7Bx%7D%3D9+%5C%5C-%5Cfrac%7B4%7D%7Bx%7D%3D9-2+%5C%5C-%5Cfrac%7B4%7D%7Bx%7D%3D7+%5C%5C7x%3D-4+%5C%5Cx%3D-%5Cfrac%7B4%7D%7B7%7D)
5)![log_{(2x-3)}25=2 \\(2x-3)^{2}=25 \\(2x-3)^{2}=5^{2} \\2x-3=5 \\2x=5+3 \\2x=8 \\x=4 log_{(2x-3)}25=2 \\(2x-3)^{2}=25 \\(2x-3)^{2}=5^{2} \\2x-3=5 \\2x=5+3 \\2x=8 \\x=4](https://tex.z-dn.net/?f=log_%7B%282x-3%29%7D25%3D2+%5C%5C%282x-3%29%5E%7B2%7D%3D25+%5C%5C%282x-3%29%5E%7B2%7D%3D5%5E%7B2%7D+%5C%5C2x-3%3D5+%5C%5C2x%3D5%2B3+%5C%5C2x%3D8+%5C%5Cx%3D4)
6)![log_{2x}(4x-1)=2 \\(2x)^{2}=4x-1 \\4x^{2}-4x+1=0 \\(2x-1)^{2}=0 \\2x-1=0 \\2x=1 \\x=\frac{1}{2} log_{2x}(4x-1)=2 \\(2x)^{2}=4x-1 \\4x^{2}-4x+1=0 \\(2x-1)^{2}=0 \\2x-1=0 \\2x=1 \\x=\frac{1}{2}](https://tex.z-dn.net/?f=log_%7B2x%7D%284x-1%29%3D2+%5C%5C%282x%29%5E%7B2%7D%3D4x-1+%5C%5C4x%5E%7B2%7D-4x%2B1%3D0+%5C%5C%282x-1%29%5E%7B2%7D%3D0+%5C%5C2x-1%3D0+%5C%5C2x%3D1+%5C%5Cx%3D%5Cfrac%7B1%7D%7B2%7D)
7)![log_{4}(x+1)=2 \\4^{2}=x+1 \\x+1=16 \\x=16-1 \\x=15 log_{4}(x+1)=2 \\4^{2}=x+1 \\x+1=16 \\x=16-1 \\x=15](https://tex.z-dn.net/?f=log_%7B4%7D%28x%2B1%29%3D2+%5C%5C4%5E%7B2%7D%3Dx%2B1+%5C%5Cx%2B1%3D16+%5C%5Cx%3D16-1+%5C%5Cx%3D15)