" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Conclusión:
El límite es 0, es decir, no hay límite.
¡SUERTE!
Primero tenemos que racionalizar tanto el numerador como el denominador:
= lim x–>2 ((√(x–1)–1)(√(x–1)+1)(√(x+2)+2))/((√(x+2)–2)(√(x–1)+1)(√(x+2)+2))
= lim x–>2 ((x–1–1)(√(x+2)+2))/((x+2–4)(√(x–1)+1))
= lim x–>2 ((x–2)(√(x+2)+2))/((x–2)(√(x–1)+1))
= lim x–>2 (√(x+2)+2)/(√(x–1)+1)
= (√4 + 2)/(√1 + 1) = 4/2 = 2
El límite es 2.