Ghinashoda
Integral dari (x² + 2x)dx = Integral (x²+2x)(x+1)^-2dx (x + 1)² Misal U = x² + 2x ⇒ du = (2x + 2)dx ⇒ (1/2)du = (x + 1)dx Integral (x²+2x)dx = Integral U du (1/2)² = Integral U/(1/4)du = Integral 4Udu = 2U² + C = 2(x² + 2x)² + C
1 votes Thanks 1
acim
Perhatikan bahwa : (x^2+2x)/(x+1)^2=((x+1)^2-1)/(x+1)^2 = (x+1)^2/(x+1)^2 - 1/(x+1)^2 = 1 - 1/(x+1)^2 so, = int (1 - 1/(x+1)^2) dx = int dx - int 1/(x+1)^2 dx = x - int 1/(x+1)^2 dx
misal : u = x + 1 du = dx so, = x - int 1/u^2 du = x - int u^-2 du = x + u^-1 + C = x + 1/u + C = x + 1/(x+1) + C
(x + 1)²
Misal U = x² + 2x ⇒ du = (2x + 2)dx ⇒ (1/2)du = (x + 1)dx
Integral (x²+2x)dx = Integral U du
(1/2)²
= Integral U/(1/4)du
= Integral 4Udu
= 2U² + C
= 2(x² + 2x)² + C
(x^2+2x)/(x+1)^2=((x+1)^2-1)/(x+1)^2 = (x+1)^2/(x+1)^2 - 1/(x+1)^2
= 1 - 1/(x+1)^2
so,
= int (1 - 1/(x+1)^2) dx
= int dx - int 1/(x+1)^2 dx
= x - int 1/(x+1)^2 dx
misal :
u = x + 1
du = dx
so,
= x - int 1/u^2 du
= x - int u^-2 du
= x + u^-1 + C
= x + 1/u + C
= x + 1/(x+1) + C