Wyznacz wzór na an mając dane Sn=2n^2-n
prosze dokładnie opisać i wytłumaczyć
Sn=2n^2-n
Sn= (a1+an)/2*n
(a1+an)/2*n=2n^2-n
a1+an=(2n^2-n)*2*n
an=(2n^2-n)*2*n - a1
Sn = 2n² - n
S1 = 2 * 1² - 1 = 2 - 1 = 1
a1 = 1
Sn = (a1 +an) / 2 * n
2n² - n = (1 + an) / 2 * n /:n
2n - 1 = (1 + an) / 2 /*2
4n - 2 = 1 + an
an = 4n - 2 - 1
an = 4n - 3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Sn=2n^2-n
Sn= (a1+an)/2*n
(a1+an)/2*n=2n^2-n
a1+an=(2n^2-n)*2*n
an=(2n^2-n)*2*n - a1
Sn = 2n² - n
S1 = 2 * 1² - 1 = 2 - 1 = 1
a1 = 1
Sn = (a1 +an) / 2 * n
2n² - n = (1 + an) / 2 * n /:n
2n - 1 = (1 + an) / 2 /*2
4n - 2 = 1 + an
an = 4n - 2 - 1
an = 4n - 3