Wyznacz współrzędne wierzchołka paraboli. (Proszę z obliczeniami).
a) y=4²-8x+⅓
b) y=x²+6x-100
c) y=x²+x
a)
y = 4x^2 - 8x +1/3
a = 4, b = -8, c =1/3
Wierzchołek paraboli będacej wykresem funkcji kwadratowqej y = ax^2 +bx +c
(x e R, a =/= 0) ma współrzędne (Xw,Yw),gdzie:
Xw = p = -b/2a
Yw = q = -(b^2 - 4ac)/4a
p = -b/2a = -(-8)/8 = 8/8 = 1
q = -(b^2 -4ac) = -[(-8)^2 -4 *1/3)]/16 = -(64*4/3)/16 = -256/3:16 = -5 1/3
W(p,q)
W(1; -5 1/3)
============
b)
y = x^2 + 6x -100
a = 1, b = 6, c = -100
p = -b/2a = -6/2 = -3
q = -(b^2 -4ac)/4a = -[6^2 - 4*1((-100)]/4 = -(36+400)/4 = -109
W(-3, -109)
===========
c)
y = x^2 + x
a = 1, b = 1, c = 0
p= -b/2a = -1/2 = -1/2
q = -(b^2 -4ac)/4 = -(1^2 - 4*1*0)/4 = -1/4
W(p, q)
W(-1/2, -1/4)
=============
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
y = 4x^2 - 8x +1/3
a = 4, b = -8, c =1/3
Wierzchołek paraboli będacej wykresem funkcji kwadratowqej y = ax^2 +bx +c
(x e R, a =/= 0) ma współrzędne (Xw,Yw),gdzie:
Xw = p = -b/2a
Yw = q = -(b^2 - 4ac)/4a
p = -b/2a = -(-8)/8 = 8/8 = 1
q = -(b^2 -4ac) = -[(-8)^2 -4 *1/3)]/16 = -(64*4/3)/16 = -256/3:16 = -5 1/3
W(p,q)
W(1; -5 1/3)
============
b)
y = x^2 + 6x -100
a = 1, b = 6, c = -100
p = -b/2a = -6/2 = -3
q = -(b^2 -4ac)/4a = -[6^2 - 4*1((-100)]/4 = -(36+400)/4 = -109
W(p,q)
W(-3, -109)
===========
c)
y = x^2 + x
a = 1, b = 1, c = 0
p= -b/2a = -1/2 = -1/2
q = -(b^2 -4ac)/4 = -(1^2 - 4*1*0)/4 = -1/4
W(p, q)
W(-1/2, -1/4)
=============