Wyznacz współrzędne punktów wspólnych okręgu o środku w punkcie S=(3, -2) i promieniu r=6 i prostej o równaniu y+6=0
(x-a)²+(y-b)²=r²
(x-3)²+(y+2)²=36
y=-6
x²-6x+9 +(-6+2)²=36
x²-6x+9 +16=36
x²-6x-11=0
Δ=b²-4ac=36 + 44=80
√Δ=√80=√(16*5)=4√5
x1=(-b-√Δ)/2a=(6-4√5)/2=3-2√5
x2=(-b+√Δ)/2a=(6+4√5)/2=3+2√5
(3 - 2√5 , -6 ) , (3 + 2√5 , -6 )
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
(x-a)²+(y-b)²=r²
(x-3)²+(y+2)²=36
y=-6
x²-6x+9 +(-6+2)²=36
x²-6x+9 +16=36
x²-6x-11=0
Δ=b²-4ac=36 + 44=80
√Δ=√80=√(16*5)=4√5
x1=(-b-√Δ)/2a=(6-4√5)/2=3-2√5
x2=(-b+√Δ)/2a=(6+4√5)/2=3+2√5
(3 - 2√5 , -6 ) , (3 + 2√5 , -6 )