wyznacz punkty wspólne okręgu (x+2)^+y^=81 i prostej x-2y+4=0
srodek okręgu S=[-2;0]
r=√81=9
[x+2]²+y²=81
x-2y+4=0
x=2y-4
[2y-4+2]²+y²=81
[2y-2]²+y²=81
4y²-8y+4+y²=81
5y²-8y-77=0
Δ=b²-4ac=64+1540=1604
√Δ=2√401
y₁=[-b-√Δ]/2a=[8-2√401]/10=[4-√401]/5
x₁=2×[4-√401]/5 -4=[8-2√401]/5 -4=[-12-2√401]/5
punkt A [x₁;y₁] to pierwszy punkt wspólny
y₂=[-b+√Δ]/2a=[8+2√401]/10=[4+√401]/5
x₂=2[4+√401]/5-4=[-12+2√401]/5
PUNKT B[x₂;y₂] to drugi punkt wspólny
(x+2)^2 + y^2 =81
x - 2 +4 =0
x =2y -4
(2y-4+2)^2 +y^2 =81
(2y-2)^2 +y^2 =81
4y^2 -8y +4 +y^2 =81
5y^2 -8y +4 -81 =0
5y^2 -8y -77 =0
D =b^2 -4ac
D =(-8)^2 -4*5*(-77)
D =64 +1540 =1604
VD =V1604 =2V401
y1 =(-b-VD)/2a
y2 =(-b+VD)/2a
y1 =(8-2V401)/10 =4/5 -1/5V401 =(4-V401)/5
y2 =(8+2V401)/10 =(4+V401)/5
x =2y-4
x1 =2(4-V401)/5 -4
x2 =2(4+V401)/5 -4
{x1 =2(4-V401)/5 -4}
{y1 =(4-V401)/5}
{x2 =2(4+V401)/5-4}
{y2 =(4+V401)/5}
Okrąg i prosta mają dwa punkty wspólne: A=(x1;y1) i B=(x2;y2)
Środek okręgu O=(-2;0) o promieniu r =V81 =9.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
srodek okręgu S=[-2;0]
r=√81=9
[x+2]²+y²=81
x-2y+4=0
x=2y-4
[2y-4+2]²+y²=81
[2y-2]²+y²=81
4y²-8y+4+y²=81
5y²-8y-77=0
Δ=b²-4ac=64+1540=1604
√Δ=2√401
y₁=[-b-√Δ]/2a=[8-2√401]/10=[4-√401]/5
x₁=2×[4-√401]/5 -4=[8-2√401]/5 -4=[-12-2√401]/5
punkt A [x₁;y₁] to pierwszy punkt wspólny
y₂=[-b+√Δ]/2a=[8+2√401]/10=[4+√401]/5
x₂=2[4+√401]/5-4=[-12+2√401]/5
PUNKT B[x₂;y₂] to drugi punkt wspólny
(x+2)^2 + y^2 =81
x - 2 +4 =0
x =2y -4
(2y-4+2)^2 +y^2 =81
(2y-2)^2 +y^2 =81
4y^2 -8y +4 +y^2 =81
5y^2 -8y +4 -81 =0
5y^2 -8y -77 =0
D =b^2 -4ac
D =(-8)^2 -4*5*(-77)
D =64 +1540 =1604
VD =V1604 =2V401
y1 =(-b-VD)/2a
y2 =(-b+VD)/2a
y1 =(8-2V401)/10 =4/5 -1/5V401 =(4-V401)/5
y2 =(8+2V401)/10 =(4+V401)/5
x =2y-4
x1 =2(4-V401)/5 -4
x2 =2(4+V401)/5 -4
{x1 =2(4-V401)/5 -4}
{y1 =(4-V401)/5}
{x2 =2(4+V401)/5-4}
{y2 =(4+V401)/5}
Okrąg i prosta mają dwa punkty wspólne: A=(x1;y1) i B=(x2;y2)
Środek okręgu O=(-2;0) o promieniu r =V81 =9.