wyznacz miejsca zerowe funkcjif(x)=2(x+3)(x-5)oraz podaj jej postać kanoniczną
f(x) = 2(x+3)(x-5)
f(x) = 0
2(x+3)(x-5) = 0
x+3 = 0 => x = -3
lub
x-5 = 0 => x = 5
Odp. MZ: -3;5
=============
Postać kanoniczna trójmianu kwadratowego:
y = a(x-p)²+q
Sprowadzamy do postaci ogólnej:
y = f(x) = ax²+bx+c
f(x) = 2(x+3)(x-5) = 2(x²-5x+3x-15) = 2(x²-2x-15)
f(x) = 2x²-4x-30 - postać ogólna
a = 2, b = -4, c = -30
p = -b/2a = -(-4)/(2·2) = 4/4 = 1
q = f(1) = 2·1²-4·1-30 = 2-4-30 = -32
Postać kanoniczna funkcji:
f(x) = 2(x-1)²-32
==============
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
f(x) = 2(x+3)(x-5)
f(x) = 0
2(x+3)(x-5) = 0
x+3 = 0 => x = -3
lub
x-5 = 0 => x = 5
Odp. MZ: -3;5
=============
Postać kanoniczna trójmianu kwadratowego:
y = a(x-p)²+q
Sprowadzamy do postaci ogólnej:
y = f(x) = ax²+bx+c
f(x) = 2(x+3)(x-5) = 2(x²-5x+3x-15) = 2(x²-2x-15)
f(x) = 2x²-4x-30 - postać ogólna
a = 2, b = -4, c = -30
p = -b/2a = -(-4)/(2·2) = 4/4 = 1
q = f(1) = 2·1²-4·1-30 = 2-4-30 = -32
Postać kanoniczna funkcji:
f(x) = 2(x-1)²-32
==============