wyznacz miejsca zerowe f kwadratowej y+2xkwadrat-4x+2 y=-xkwadrat+3x+4
y = 2x² - 4x +2
Δ=b²-4ac = 16 - 16=0
x=-b/2a = 4/4 = 1
lub inaczej:
2x² -4x + 2=0
2(x²-2x+1) =0
2(x-1)²=0 /:2
(x-1)²=0
x = 1
odp:
x=1
y = -x² + 3x + 4
Δ=9 + 16 = 25
√Δ=5
x1=(-b-√Δ)/2a = (-3-5)/-2 = -8/-2 = 4
x2=(-b+√Δ)/2a = (-3+5)/-2 = 2/-2 = -1
x = 4 ∨ x=-1
a)
y = 2x²-4x+2
2x²-4x+2 = 0 /:2
x²-2x+1 = 0
a = 1, b = -2, c = 1
Δ = b²-4ac = 4-4 = 0
x = -b/2a = -(-2)/2 = 2/2 = 1
Odp. MZ: 1
b)
y = -x²+3x+4
-x²+3x+4 = 0
a = -1, b = 3, c = 4
Δ = b²-4ac = 9+16 = 25
√Δ = √25 = 5
x1 = (-b-√Δ)/2a = (-3-5)/(-2) = 4
x2 = (-b+√Δ)/2a = (-3+5)/(-2) = -1
MZ: 4; -1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
y = 2x² - 4x +2
Δ=b²-4ac = 16 - 16=0
x=-b/2a = 4/4 = 1
lub inaczej:
2x² -4x + 2=0
2(x²-2x+1) =0
2(x-1)²=0 /:2
(x-1)²=0
x = 1
odp:
x=1
y = -x² + 3x + 4
Δ=9 + 16 = 25
√Δ=5
x1=(-b-√Δ)/2a = (-3-5)/-2 = -8/-2 = 4
x2=(-b+√Δ)/2a = (-3+5)/-2 = 2/-2 = -1
odp:
x = 4 ∨ x=-1
a)
y = 2x²-4x+2
2x²-4x+2 = 0 /:2
x²-2x+1 = 0
a = 1, b = -2, c = 1
Δ = b²-4ac = 4-4 = 0
x = -b/2a = -(-2)/2 = 2/2 = 1
Odp. MZ: 1
b)
y = -x²+3x+4
-x²+3x+4 = 0
a = -1, b = 3, c = 4
Δ = b²-4ac = 9+16 = 25
√Δ = √25 = 5
x1 = (-b-√Δ)/2a = (-3-5)/(-2) = 4
x2 = (-b+√Δ)/2a = (-3+5)/(-2) = -1
MZ: 4; -1