Wykonaj działania i podaj konieczne założenia:
a)
D:
x-3≠0 ∧ x≠0
x≠3 ∧ x≠0
x∈R\{0;3}
3/(x-3)+(4+x)/x=3x/x(x-3)+(x-3)(4+x)/x(x-3)=[3x+x²+x-12]/x(x-3)=
(x²+4x-12)/(x²-3x)
b)
x-3≠0 ∧ x+3≠0
x≠3 ∧ x≠-3
x∈R\{-3;3}
(x-2)/(x-3)-(x-1)/(x+3)=(x-2)(x+3)/(x-3)(x+3)-(x-1)(x-3)/(x+3)(x-3)=
[(x²+x-6)-(x²-4x+3)]/(x²-9)=[x²+x-6-x²+4x-3]/(x²-9)=(5x-9)/(x²-9)
c)
x²-9≠0
(x-3)(x+3)≠0
[(x+3)/2]*[16/(x²-9)]=[(x+3)/2]*[16/(x-3)(x+3)]=8/(x-3)
d)
x+6≠0 ∧ 2x+12≠0 ∧ 3/(2x+12)≠0
x≠-6 ∧ x≠-6 ∧ x∈R
x∈R\{-6}
[1/(x+6)]/[3/(2x+12)]=[1/(x+6)]*[2(x+6)/3]=2/3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
D:
x-3≠0 ∧ x≠0
x≠3 ∧ x≠0
x∈R\{0;3}
3/(x-3)+(4+x)/x=3x/x(x-3)+(x-3)(4+x)/x(x-3)=[3x+x²+x-12]/x(x-3)=
(x²+4x-12)/(x²-3x)
b)
x-3≠0 ∧ x+3≠0
x≠3 ∧ x≠-3
x∈R\{-3;3}
(x-2)/(x-3)-(x-1)/(x+3)=(x-2)(x+3)/(x-3)(x+3)-(x-1)(x-3)/(x+3)(x-3)=
[(x²+x-6)-(x²-4x+3)]/(x²-9)=[x²+x-6-x²+4x-3]/(x²-9)=(5x-9)/(x²-9)
c)
x²-9≠0
(x-3)(x+3)≠0
x≠3 ∧ x≠-3
x∈R\{-3;3}
[(x+3)/2]*[16/(x²-9)]=[(x+3)/2]*[16/(x-3)(x+3)]=8/(x-3)
d)
x+6≠0 ∧ 2x+12≠0 ∧ 3/(2x+12)≠0
x≠-6 ∧ x≠-6 ∧ x∈R
x∈R\{-6}
[1/(x+6)]/[3/(2x+12)]=[1/(x+6)]*[2(x+6)/3]=2/3