Odpowiedź:
Szczegółowe wyjaśnienie:
Skoro liczby a, b, c i d tworzą ciąg geometryczny, możemy je zapisać jako:
[tex]a_1\quad a_1\cdot q\quad a_1\cdot q^2\quad a_1\cdot q^3[/tex]
Wiemy, że:
[tex]\begin{cases}a_1\cdot q+a_1\cdot q^2=24\\a_1+a_1\cdot q^3=36\end{cases}\\\begin{cases}a_1\cdot q\cdot (1+ q)=24\\a_1\cdot (1+q^3)=36\end{cases}\\\begin{cases}a_1=\dfrac{24}{q\cdot (1+ q)}\\a_1\cdot (1+q^3)=36\end{cases}\\\begin{cases}a_1=\dfrac{24}{q\cdot (1+ q)}\\\dfrac{24\cdot (1+q^3)}{q\cdot (1+ q)}=36\end{cases}\\\begin{cases}a_1=\dfrac{24}{q\cdot (1+ q)}\\\dfrac{2\cdot (1+q)\cdot(1-q+q^2)}{q\cdot (1+ q)}=3\end{cases}[/tex]
[tex]\begin{cases}a_1=\dfrac{24}{q\cdot (1+ q)}\\\dfrac{2\cdot (1-q+q^2)}{q}=3\end{cases}\\\begin{cases}a_1=\dfrac{24}{q\cdot (1+ q)}\\2-2\cdot q+2\cdot q^2=3\cdot q\end{cases}\\\begin{cases}a_1=\dfrac{24}{q\cdot (1+ q)}\\2\cdot q^2-5\cdot q+2 =0\end{cases}[/tex]
[tex]\Delta =(-5)^2-4\cdot 2\cdot 2=25-16=9\\\sqrt{\Delta} = 3\\q = \dfrac{5-3}{2\cdot 2}=\dfrac{1}{2}\quad\lor\quad q=\dfrac{5+3}{2\cdot 2}=2[/tex]
Ciąg jest malejący (0< q < 1), więc drugie rozwiązanie odrzucamy
[tex]\begin{cases}a_1=\dfrac{24}{q\cdot (1+ q)}\\q=\dfrac{1}{2}\end{cases}\\\begin{cases}a_1=\dfrac{24}{\frac{1}{2}\cdot (1+ \frac{1}{2})}=32\\q=\dfrac{1}{2}\end{cases}[/tex]
Szukane wyrazy ciągu:
32, 16, 8, 4
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
Szukane liczby:
32, 16, 8, 4
Szczegółowe wyjaśnienie:
Skoro liczby a, b, c i d tworzą ciąg geometryczny, możemy je zapisać jako:
[tex]a_1\quad a_1\cdot q\quad a_1\cdot q^2\quad a_1\cdot q^3[/tex]
Wiemy, że:
[tex]\begin{cases}a_1\cdot q+a_1\cdot q^2=24\\a_1+a_1\cdot q^3=36\end{cases}\\\begin{cases}a_1\cdot q\cdot (1+ q)=24\\a_1\cdot (1+q^3)=36\end{cases}\\\begin{cases}a_1=\dfrac{24}{q\cdot (1+ q)}\\a_1\cdot (1+q^3)=36\end{cases}\\\begin{cases}a_1=\dfrac{24}{q\cdot (1+ q)}\\\dfrac{24\cdot (1+q^3)}{q\cdot (1+ q)}=36\end{cases}\\\begin{cases}a_1=\dfrac{24}{q\cdot (1+ q)}\\\dfrac{2\cdot (1+q)\cdot(1-q+q^2)}{q\cdot (1+ q)}=3\end{cases}[/tex]
[tex]\begin{cases}a_1=\dfrac{24}{q\cdot (1+ q)}\\\dfrac{2\cdot (1-q+q^2)}{q}=3\end{cases}\\\begin{cases}a_1=\dfrac{24}{q\cdot (1+ q)}\\2-2\cdot q+2\cdot q^2=3\cdot q\end{cases}\\\begin{cases}a_1=\dfrac{24}{q\cdot (1+ q)}\\2\cdot q^2-5\cdot q+2 =0\end{cases}[/tex]
[tex]\Delta =(-5)^2-4\cdot 2\cdot 2=25-16=9\\\sqrt{\Delta} = 3\\q = \dfrac{5-3}{2\cdot 2}=\dfrac{1}{2}\quad\lor\quad q=\dfrac{5+3}{2\cdot 2}=2[/tex]
Ciąg jest malejący (0< q < 1), więc drugie rozwiązanie odrzucamy
[tex]\begin{cases}a_1=\dfrac{24}{q\cdot (1+ q)}\\q=\dfrac{1}{2}\end{cases}\\\begin{cases}a_1=\dfrac{24}{\frac{1}{2}\cdot (1+ \frac{1}{2})}=32\\q=\dfrac{1}{2}\end{cases}[/tex]
Szukane wyrazy ciągu:
32, 16, 8, 4