Wielomian W określony jest wzorem W(x)= x⁴-3x³-3x²+7x+6 .
Oblicz W(√2) .
Sprawdź dla której z liczb 1,2,3 wartośc wielomianu W jest równa 0 .
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
W(x) = x^4 - 3 x^3 - 3 x^2 + 7 x + 6
zatem
W( p(2)) = [ p(2)]^4 - 3 *[ p(2)]^3 - 3 *[ p(2)]^2 + 7 *p(2) + 6 =
= 4 - 3*2 p(2) - 3*2 + 7 p(2) + 6 = 10 - 6 p(2) - 6 + 7 p(2) = 4 + p(2)
==========================================================
W(1) = 1 -3*1 - 3*1 + 7*1 + 6 = 14 - 6 = 8
W(2) = 2^4 - 3*2^3 - 3*2^2 + 6 = 16 - 24 - 12 + 6 = 22 - 36 = - 14
W(3) = 3^4 - 3*3^3 - 3*3^2 + 7*3 + 6 = 81 - 81 - 27 + 21 + 6 = 0
==========================================================