Odp.: |AB| = 4
{w załączniku nieco zmodyfikowany rysunek}
Jeśli poprowadzimy odcinek DE równoległy do boku BC, to otrzymamy trójkąty podobne:
[tex]\large\text{$\bold{\triangle AED\sim\triangle ABC}$}[/tex]
[tex]\large\text{$\bold{|AD| = |CD|\ \implies\ |CD| = 0,5|AC|}$}[/tex]
Skoro trójkąty AED i ABC są podobne to:
[tex]\large\text{$\bold{ |CD| = 0,5|AC|\ \implies\ |DG| = 0,5|AF|}$}[/tex]
Czyli:
[tex]\large\text{$\bold{h_1=\frac {h}2}$}[/tex]
[tex]\large\text{$\bold{|\angle\, DBG| = 45^o\ \implies\ |\angle\, BDG| = 45^o\ \implies\ |BD|=h_1\sqrt2}$}[/tex]
[tex]\large\text{$\bold{\sqrt3+1=h_1\sqrt2}$} \\\\ \large\text{$\bold{\sqrt3+1=\frac h2\sqrt2\qquad/\cdot\sqrt2}$} \\\\ \large\text{$\bold{\sqrt2(\sqrt3+1)=\frac h2\cdot2}$} \\\\\large\text{$\bold{h=\sqrt6+\sqrt2}$}[/tex]
[tex]\large\text{$\bold{|\angle\, ABF| = 30^o+45^o=75^o}$}[/tex]
[tex]\large\text{$\bold{|\angle\, ABF| = 75^o\ \wedge\ |\angle\, BFA| = 90^o\ \implies\ |\angle\, BAF| = 15^o}$}[/tex]
[tex]\large\text{$\bold{\cos|\angle\, BAF| = \frac{|AF|}{|AB|}}$} \\\\ \large\text{$\bold{\cos15^o= \frac{h}{c}}$} \\\\ \large\text{$\bold{\frac{\sqrt6+\sqrt2}4= \frac{\sqrt6+\sqrt2}{c}}$} \\\\ \Large\text{$\bold{c=4}$}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Odp.: |AB| = 4
Trygonometria i trójkąty podobne
{w załączniku nieco zmodyfikowany rysunek}
Jeśli poprowadzimy odcinek DE równoległy do boku BC, to otrzymamy trójkąty podobne:
[tex]\large\text{$\bold{\triangle AED\sim\triangle ABC}$}[/tex]
[tex]\large\text{$\bold{|AD| = |CD|\ \implies\ |CD| = 0,5|AC|}$}[/tex]
Skoro trójkąty AED i ABC są podobne to:
[tex]\large\text{$\bold{ |CD| = 0,5|AC|\ \implies\ |DG| = 0,5|AF|}$}[/tex]
Czyli:
[tex]\large\text{$\bold{h_1=\frac {h}2}$}[/tex]
[tex]\large\text{$\bold{|\angle\, DBG| = 45^o\ \implies\ |\angle\, BDG| = 45^o\ \implies\ |BD|=h_1\sqrt2}$}[/tex]
[tex]\large\text{$\bold{\sqrt3+1=h_1\sqrt2}$} \\\\ \large\text{$\bold{\sqrt3+1=\frac h2\sqrt2\qquad/\cdot\sqrt2}$} \\\\ \large\text{$\bold{\sqrt2(\sqrt3+1)=\frac h2\cdot2}$} \\\\\large\text{$\bold{h=\sqrt6+\sqrt2}$}[/tex]
[tex]\large\text{$\bold{|\angle\, ABF| = 30^o+45^o=75^o}$}[/tex]
[tex]\large\text{$\bold{|\angle\, ABF| = 75^o\ \wedge\ |\angle\, BFA| = 90^o\ \implies\ |\angle\, BAF| = 15^o}$}[/tex]
[tex]\large\text{$\bold{\cos|\angle\, BAF| = \frac{|AF|}{|AB|}}$} \\\\ \large\text{$\bold{\cos15^o= \frac{h}{c}}$} \\\\ \large\text{$\bold{\frac{\sqrt6+\sqrt2}4= \frac{\sqrt6+\sqrt2}{c}}$} \\\\ \Large\text{$\bold{c=4}$}[/tex]