w trojkacie abc mamy dane :
|AC| = 3 pierwiastek2
|BC| = 5
| KĄT BAC| = 45 STOPNI
oblicz Pole tego trojkata i promien okregu wpisanego
daje naj !
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
z tw. cosinusów
5² = (3√2)² + x² - 2 * 3√2 * x * cos45*
25 = 18 + x² - 6√2x * √2/2
25 - 18 = x² - 6x
x² - 6x - 7 = 0
Δ = 36 + 28 = 64
√Δ = 8
x1 = (6 - 8)/2 = -2/2 = -1 ∉ D
x2 = (6 + 8)/2 = 14/2 = 7
|AB| = x = 7
obliczamy wysokosć tego trójkata:
a² + h² = (3√2)²
(7 - a)² + h² = 5²
h² = 18 - a²
49 - 14a + a² + 18 - a² = 25
67 - 14a = 25
-14a = 25 - 67
-14a = -42
a = 3
h² = 18 - 3²
h² = 18 - 9
h² = 9
h = 3
P = 1/2 * 7 * 3 = 10,5 -------- pole trójkąta
r = 2P / (a + b + c)
r = 2 * 10,5 / (7 + 5 + 3√2)
r = 21 / (12 + 3√2)
r = 21(12 - 3√2) / (12 + 3√2) (12 - 3√2)
r = 21(12 - 3√2) / (12² - (3√2)²)
r = 21(12 - 3√2) / (144 - 18)
r = 21(12 - 3√2) / 126
r = (12 - 3√2) / 6
r = 3(4 - √2) / 6
r = (4 - √2) / 2 --------- promień okegu wpisanego w ten trójkąt