Jawab:
Penjelasan dengan langkah-langkah:
(-2+3i)³+5(-2+3i)²+17(-2+3i)+13
= (-2+3i)²(-2+3i+5)-34+51i+13
= (4-9-2.2.3i)(3+3i)-21+51i
= -3(5+12i)(1+i)-21+51i
= -3(-7+17i)-21+51i
= 21-51i-21+51i
= 0 (proven)
z³+5z²+17z+13 = (z+(2-3i))(z²+az+b)
b.(2-3i) = 13, b = 13/(2-3i) = 13(2+3i)/(13) = 2+3i
z³+5z²+17z+13 = (z+(2-3i))(z²+az+(2+3i))
= z³+(a+2-3i)z²+(2+3i+a(2-3i))z+13
z³+5z²+17z+13 = z³+(a+2-3i)z²+(2(a+1)+3i(1-a))+13
compare coefficient :
a+2-3i = 5
a = 3(1+i)
2(a+1)+3i(1-a) = 17
2a+2+3i-3ia = 17
a(2-3i) = 15-3i
a = (15-3i)/(2-3i)
a = (15-3i)(2+3i)/13
a = (30+9+45i-6i)/13
a = (39+39i)/13
a = 3(1+i) (the same √ )
z³+5z²+17z+13 = (z+(2-3i))(z²+3(1+i)z+(2+3i))
to determine 2 other roots use the quadratic :
z = (-3(1+i) ± √(9(1+i)²-4.1.(2+3i)) )/(2.1)
= (-(3+i) ± √(9.2i-8-12i))/(2)
z = (-(3+i) ± √(6i-8))/(2)
z = -(3+i)/(2) ± √(3i/2 - 2)
z = -(3+i)/(2) + √(3i/2 - 2) or -(3+i)/(2) - √(3i/2 - 2)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawab:
Penjelasan dengan langkah-langkah:
(-2+3i)³+5(-2+3i)²+17(-2+3i)+13
= (-2+3i)²(-2+3i+5)-34+51i+13
= (4-9-2.2.3i)(3+3i)-21+51i
= -3(5+12i)(1+i)-21+51i
= -3(-7+17i)-21+51i
= 21-51i-21+51i
= 0 (proven)
z³+5z²+17z+13 = (z+(2-3i))(z²+az+b)
b.(2-3i) = 13, b = 13/(2-3i) = 13(2+3i)/(13) = 2+3i
z³+5z²+17z+13 = (z+(2-3i))(z²+az+(2+3i))
= z³+(a+2-3i)z²+(2+3i+a(2-3i))z+13
z³+5z²+17z+13 = z³+(a+2-3i)z²+(2(a+1)+3i(1-a))+13
compare coefficient :
a+2-3i = 5
a = 3(1+i)
2(a+1)+3i(1-a) = 17
2a+2+3i-3ia = 17
a(2-3i) = 15-3i
a = (15-3i)/(2-3i)
a = (15-3i)(2+3i)/13
a = (30+9+45i-6i)/13
a = (39+39i)/13
a = 3(1+i) (the same √ )
z³+5z²+17z+13 = (z+(2-3i))(z²+3(1+i)z+(2+3i))
to determine 2 other roots use the quadratic :
z = (-3(1+i) ± √(9(1+i)²-4.1.(2+3i)) )/(2.1)
= (-(3+i) ± √(9.2i-8-12i))/(2)
z = (-(3+i) ± √(6i-8))/(2)
z = -(3+i)/(2) ± √(3i/2 - 2)
z = -(3+i)/(2) + √(3i/2 - 2) or -(3+i)/(2) - √(3i/2 - 2)