Uzasadnij, że jeśli
a+b=1 i a² +b²=9, to a⁴ + b⁴ =49
a+b=1⇒a=1-b
a² +b²=9⇒(1-b)²+b²=9⇒1-2b+2b²-9=0
2b²-2b-8=0
√Δ=√(4+64)=2√17
b₁=1/2-√17/2; a₁=1/2+√17/2
b₂=1/2+√17/2; a₂=1/2-√17/2
Wybieramy jedno rozwiązania i podnosimy do potęgi czwartej a i b.
(1/2-√17/2)⁴+(1/2+√17/2)⁴=
[(1/2-√17/2)²]²+[(1/2+√17/2)²]²=
[1/4 - √17/2 + 17/4]²+[1/4 + √17/2 + 17/4]²=
[9/2 - √17/2]²+[9/2 + √17/2]²=
81/4 - 9√17/2 + 17/4 + 81/4 + 9√17/2 + 17/4 = 196/4 = 49
a⁴ + b⁴ =49
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a+b=1⇒a=1-b
a² +b²=9⇒(1-b)²+b²=9⇒1-2b+2b²-9=0
2b²-2b-8=0
√Δ=√(4+64)=2√17
b₁=1/2-√17/2; a₁=1/2+√17/2
b₂=1/2+√17/2; a₂=1/2-√17/2
Wybieramy jedno rozwiązania i podnosimy do potęgi czwartej a i b.
(1/2-√17/2)⁴+(1/2+√17/2)⁴=
[(1/2-√17/2)²]²+[(1/2+√17/2)²]²=
[1/4 - √17/2 + 17/4]²+[1/4 + √17/2 + 17/4]²=
[9/2 - √17/2]²+[9/2 + √17/2]²=
81/4 - 9√17/2 + 17/4 + 81/4 + 9√17/2 + 17/4 = 196/4 = 49
a⁴ + b⁴ =49