→ turunan ←
y = u/v → y' = (u'v - uv')/v²
u = √x = x^1/2
u' = 1/(2√x)
v = 2x - 1
v' = 2
y' = (1/(2√x) . (2x - 1) - 2√x)/(2x - 1)²
atas bawah kalikan 2√x
y' = (2x - 1 - 4x)/(2√x . (2x - 1)²)
y' = (-2x - 1) / (2(2x - 1)² √x)
F(x) = √(x)/(2x-1)
F'(x) = (d(√(x)).(2x-1) - d(2x-1).√(x))/(2x-1)²
F'(x) = ((2x-1)/(2√(x)) - 2√(x))/(2x-1)²
= ( (2x-1 - (2√(x))²/(2√(x)) )/(2x-1)²
= (2x-1 - 4x)/(2√(x).(2x-1)²)
= (-2x-1)/(2√(x).(2x-1)²)
F'(x) = -(2x+1)/(2√(x).(2x-1)²)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
→ turunan ←
y = u/v → y' = (u'v - uv')/v²
u = √x = x^1/2
u' = 1/(2√x)
v = 2x - 1
v' = 2
y' = (1/(2√x) . (2x - 1) - 2√x)/(2x - 1)²
atas bawah kalikan 2√x
y' = (2x - 1 - 4x)/(2√x . (2x - 1)²)
y' = (-2x - 1) / (2(2x - 1)² √x)
F(x) = √(x)/(2x-1)
F'(x) = (d(√(x)).(2x-1) - d(2x-1).√(x))/(2x-1)²
F'(x) = ((2x-1)/(2√(x)) - 2√(x))/(2x-1)²
= ( (2x-1 - (2√(x))²/(2√(x)) )/(2x-1)²
= (2x-1 - 4x)/(2√(x).(2x-1)²)
= (-2x-1)/(2√(x).(2x-1)²)
F'(x) = -(2x+1)/(2√(x).(2x-1)²)