Segitiga ABC
∠A = ∠C = 45°
AB = BC = a
AC = a√2
AK = √(AB² + BK²) = √(a² + (1/2 a)²)
AK = 1/2 a√5
AK/sin C = KC/sin x
1/2 a√5 / 1/2 √2 = 1/2 a / sin x
sin x = 1/2 × √2 / √5
sin x = 1/10 √10
sin x = 1/√10
cos x = √(1 - sin² x)
cos x = √((10 - 1)/10)
cos x = 3/√10
sin 2x = 2 sin x cos x = 6/10 = 3/5
cos 2x = 1 - 2 sin² x = 1 - 2/10 = 4/5
sin 3x
= sin (2x + x)
= sin 2x cos x + cos 2x sin x
= 3/5 × 3/√10 + 4/5 × 1/√10
= 13/(5√10)
sin 2x + sin 3x
= 3/5 + 13/5√10
= (3√10 + 13)/5√10
= (3√10 + 13)√10 / 50
= (30 + 13√10)/50
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Segitiga ABC
∠A = ∠C = 45°
AB = BC = a
AC = a√2
AK = √(AB² + BK²) = √(a² + (1/2 a)²)
AK = 1/2 a√5
AK/sin C = KC/sin x
1/2 a√5 / 1/2 √2 = 1/2 a / sin x
sin x = 1/2 × √2 / √5
sin x = 1/10 √10
sin x = 1/√10
cos x = √(1 - sin² x)
cos x = √((10 - 1)/10)
cos x = 3/√10
sin 2x = 2 sin x cos x = 6/10 = 3/5
cos 2x = 1 - 2 sin² x = 1 - 2/10 = 4/5
sin 3x
= sin (2x + x)
= sin 2x cos x + cos 2x sin x
= 3/5 × 3/√10 + 4/5 × 1/√10
= 13/(5√10)
sin 2x + sin 3x
= 3/5 + 13/5√10
= (3√10 + 13)/5√10
= (3√10 + 13)√10 / 50
= (30 + 13√10)/50