Trzy proste zadania z ciągów arytmetycznych w załączniku.
3)
a1+5r=16
a1+2r=7
3r=9
r=3
a1+6=7
a1=1
a20=a1+19r=1+19*3=1+57=58
S20=(1+58)*20/2=590
4)
a n+1=4(n+1)-1=4n+3
a n+1 - an=4n+3-4n+1=4
r>0 ciąg rosnący
5)
a5=a₂q³
4000=4q³
1000=q³
q=10
a₂=a₁q
4=a₁*10
a₁=0,4
an=0,4*10^(n-1)
Zad.3
ciąg arytmetyczny
a7 = 7, a6 = 16
r = ?
S20 = ?
a1 + 5r = 16
a1 + 2r = 7 I*(-1)
-a1 - 2r = -7
---------------
3r = 9
r = 3
=====
a1 = 1
a20 = a1 +19r = 1 + 19 *3 = 58
Sn = n(a1+an)/2
S20 = 20(1+58)/2 = 590
S20 = 590
========
Zad.4
an = 4n -1
an+1 = 4(n+1) -1 = 4n + 4 -1 = 4n + 3
an1 - an = 4n +3 - 4n+1 = 4
r > 0 ciąg rosnący
Zad.5
ciąg geometryczny
a2 = 4, a5 = 4000
a1 = ?
q = ?
an = ?
a5 = a2 * q^3
4000 = 4q^3
q^3 = 1000
q = 10
a1 *q = a2
a1 = a2/q = 4/10
a1 = 0,4
an = a1 *q^(n-1)
an = 0,4 *10^(n-1)
================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
3)
a1+5r=16
a1+2r=7
3r=9
r=3
a1+6=7
a1=1
a20=a1+19r=1+19*3=1+57=58
S20=(1+58)*20/2=590
4)
a n+1=4(n+1)-1=4n+3
a n+1 - an=4n+3-4n+1=4
r>0 ciąg rosnący
5)
a5=a₂q³
4000=4q³
1000=q³
q=10
a₂=a₁q
4=a₁*10
a₁=0,4
an=0,4*10^(n-1)
Zad.3
ciąg arytmetyczny
a7 = 7, a6 = 16
r = ?
S20 = ?
a1 + 5r = 16
a1 + 2r = 7 I*(-1)
a1 + 5r = 16
-a1 - 2r = -7
---------------
3r = 9
r = 3
=====
a1 = 1
a20 = a1 +19r = 1 + 19 *3 = 58
Sn = n(a1+an)/2
S20 = 20(1+58)/2 = 590
S20 = 590
========
Zad.4
an = 4n -1
an+1 = 4(n+1) -1 = 4n + 4 -1 = 4n + 3
an1 - an = 4n +3 - 4n+1 = 4
r > 0 ciąg rosnący
Zad.5
ciąg geometryczny
a2 = 4, a5 = 4000
a1 = ?
q = ?
an = ?
a5 = a2 * q^3
4000 = 4q^3
q^3 = 1000
q = 10
=====
a1 *q = a2
a1 = a2/q = 4/10
a1 = 0,4
========
an = a1 *q^(n-1)
an = 0,4 *10^(n-1)
================