Tożsamości Tryonometryczne - należy sprawdzić czy zachodzi równość .
ctgα + =
ctgx + sinx/(1+cosx) = 1/sinx
L = ctgx + sinx/(1+cosx) =
= [ctgx *(1+cosx) + sinx]/(1+cosx) =
= (ctgx + ctgx * cosx + sinx)/(1+cox) =
= [cosx/sinx + (cosx/sinx)8cosx + sinx]/(1+cosx) =
= [cosx/sinx + (cos^2x + sin^2x)/sinx]/(1+cosx) =
= (cosx/sinx + 1/sinx)/(1+cosx) =
= (1+cosx)/sinx) * 1/(1+cosx) =
= 1/sinx
P = 1/six
L = P
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
ctgx + sinx/(1+cosx) = 1/sinx
L = ctgx + sinx/(1+cosx) =
= [ctgx *(1+cosx) + sinx]/(1+cosx) =
= (ctgx + ctgx * cosx + sinx)/(1+cox) =
= [cosx/sinx + (cosx/sinx)8cosx + sinx]/(1+cosx) =
= [cosx/sinx + (cos^2x + sin^2x)/sinx]/(1+cosx) =
= (cosx/sinx + 1/sinx)/(1+cosx) =
= (1+cosx)/sinx) * 1/(1+cosx) =
= 1/sinx
P = 1/six
L = P