Jawab:
Nomor 2 :
S∞ = 8/17
a) a = 2, r = (2/p) / 2 = 1/p
S∞ = a. (1 - r)
8/17 = 2. (1 - r)
(1 - r) = 8/17 ÷ 2
(1 - r) = 4/17
1 - 1/p = 4/17
1/p = 1 - 4/17
1/p = 17/17 - 4/17
1/p = 3/17
p =17/3
b) a = 3, r = (6/p) / 3 = 2/p
8/17 = 3. (1 - r)
(1 - r) = 8/17 ÷ 3
(1 - r) = 8/51
1 - 2/p = 8/51
2/p = 1 - 8/51
2/p = 51/51 - 8/51
2/p = 43/51
p = 2 / (43/51)
p = 2 × 51 ÷ 43
p = 102/43
Nomor 3 :
Option a :
Bola jatuh = 20 meter.
Lintasan Pantulan ke-1 = 20 × 4/5 = 16 meter.
Lintasan Turun ke-1 = 16 meter.
Lintasan Pantulan ke-2 = 16 × 4/5 = 12,8 meter.
Lintasan Turun ke-2 = 12,8 meter.
Lintasan Pantulan ke-3 = 12,8 × 4/5 = 10,24 meter.
Lintasan Turun ke-3 = 10,24 meter.
Lintasan Pantulan ke-4 = 10,24 × 4/5 = 8,192 meter.
Panjang Lintasan Bola sampai Pantulan ke-4
= 20 + 16 + 16 + 12,8 + 12,8 + 10,24 + 10,24 + 8,192
= 106,272 meter
Option b :
Panjang lintasan = ketinggian bola jatuh + (2 × deret takhingga)
Ketinggian bola jatuh = 20 m
a = pantuklan ke-1 = 4/5 × 20 = 16
r = 4/5
S∞ = a / (1-r) = 16 / (1 - 4/5) = 16 ÷ 1/5 = 80 meter
Panjang lintasan = 20 m + 80 m = 100 meter
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawab:
Nomor 2 :
S∞ = 8/17
a) a = 2, r = (2/p) / 2 = 1/p
S∞ = a. (1 - r)
8/17 = 2. (1 - r)
(1 - r) = 8/17 ÷ 2
(1 - r) = 4/17
1 - 1/p = 4/17
1/p = 1 - 4/17
1/p = 17/17 - 4/17
1/p = 3/17
p =17/3
b) a = 3, r = (6/p) / 3 = 2/p
S∞ = a. (1 - r)
8/17 = 3. (1 - r)
(1 - r) = 8/17 ÷ 3
(1 - r) = 8/51
1 - 2/p = 8/51
2/p = 1 - 8/51
2/p = 51/51 - 8/51
2/p = 43/51
p = 2 / (43/51)
p = 2 × 51 ÷ 43
p = 102/43
Nomor 3 :
Option a :
Bola jatuh = 20 meter.
Lintasan Pantulan ke-1 = 20 × 4/5 = 16 meter.
Lintasan Turun ke-1 = 16 meter.
Lintasan Pantulan ke-2 = 16 × 4/5 = 12,8 meter.
Lintasan Turun ke-2 = 12,8 meter.
Lintasan Pantulan ke-3 = 12,8 × 4/5 = 10,24 meter.
Lintasan Turun ke-3 = 10,24 meter.
Lintasan Pantulan ke-4 = 10,24 × 4/5 = 8,192 meter.
Panjang Lintasan Bola sampai Pantulan ke-4
= 20 + 16 + 16 + 12,8 + 12,8 + 10,24 + 10,24 + 8,192
= 106,272 meter
Option b :
Panjang lintasan = ketinggian bola jatuh + (2 × deret takhingga)
Ketinggian bola jatuh = 20 m
a = pantuklan ke-1 = 4/5 × 20 = 16
r = 4/5
S∞ = a / (1-r) = 16 / (1 - 4/5) = 16 ÷ 1/5 = 80 meter
Panjang lintasan = 20 m + 80 m = 100 meter