Odpowiedź:
[tex]W(x) = x^6 + 4 x^5 + 2 x^4 - 8 x^3 - 7 x^2 + 4 x + 4[/tex]
[tex]x_1 = 1[/tex] bo W( 1) = [tex]1 + 4 + 2 - 8 - 7 + 4 + 4 = 0[/tex]
[tex]x_2 = - 1[/tex] bo W(-1) = 1 - 4 + 2 + 8 - 7 - 4 + 4 = 0
[tex]x_3 = - 2[/tex] bo W(- 2) = 64 - 128 + 32 + 64 - 28 - 8 + 4 = 0
więc ( x - 1)*(x + 1)*(x + 2) - ( x² - 1)*(x + 2) = x³ +2 x² - x - 2
oraz
W ( x) : ( x³ +2 x² - x - 2 ) = ( x³ +2 x² - x - 2)
czyli W(x) = (x³ +2 x² - x - 2)² = ( x +1)²*(x - 1 )²*(x + 2)²
Dw = R \ { - 2, - 1, 1 }
=================
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]W(x) = x^6 + 4 x^5 + 2 x^4 - 8 x^3 - 7 x^2 + 4 x + 4[/tex]
[tex]x_1 = 1[/tex] bo W( 1) = [tex]1 + 4 + 2 - 8 - 7 + 4 + 4 = 0[/tex]
[tex]x_2 = - 1[/tex] bo W(-1) = 1 - 4 + 2 + 8 - 7 - 4 + 4 = 0
[tex]x_3 = - 2[/tex] bo W(- 2) = 64 - 128 + 32 + 64 - 28 - 8 + 4 = 0
więc ( x - 1)*(x + 1)*(x + 2) - ( x² - 1)*(x + 2) = x³ +2 x² - x - 2
oraz
W ( x) : ( x³ +2 x² - x - 2 ) = ( x³ +2 x² - x - 2)
czyli W(x) = (x³ +2 x² - x - 2)² = ( x +1)²*(x - 1 )²*(x + 2)²
Dw = R \ { - 2, - 1, 1 }
=================
Szczegółowe wyjaśnienie: