DB45
1) ∫ tan x sec^5 x + sin^(-1/4) (8x) cos (8x) dx = 1/5 sec^5 x - 32/3 sin^3/4 8x + c = 1/5 sec^5 x - 32/3 ⁴√(sin³ (8x)) + c
2) = 4 ∫ ( 2 sin 9x cos 3x ) +3∫ (-2 sin 9x sin 3x) = 4 ∫ sin 12x + sin 6x + 3 ∫cos 12x - cos 6x = 4 [-1/12 cos 12x - 1/6 cos 6x + 3[ 1/2 sin 12x - 1/6 sin 6x + c = - 1/3 cos 12x - 2/3 cos 6x + 1/4 sin 12 x - 1/2 sin 6x + c
∫ tan x sec^5 x + sin^(-1/4) (8x) cos (8x) dx
= 1/5 sec^5 x - 32/3 sin^3/4 8x + c
= 1/5 sec^5 x - 32/3 ⁴√(sin³ (8x)) + c
2)
= 4 ∫ ( 2 sin 9x cos 3x ) +3∫ (-2 sin 9x sin 3x)
= 4 ∫ sin 12x + sin 6x + 3 ∫cos 12x - cos 6x
= 4 [-1/12 cos 12x - 1/6 cos 6x + 3[ 1/2 sin 12x - 1/6 sin 6x + c
= - 1/3 cos 12x - 2/3 cos 6x + 1/4 sin 12 x - 1/2 sin 6x + c