" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Df = {x ∈ R | f(x) ∈ R}
==========
1)
Df = {x ∈ R | 4 - 5x ∈ r}
Df = R
Df = (-~, ~)
2)
Df = {x ∈ R | x² + 3x - 4 ∈ R}
Df = {x ∈ R | (x + 4)(x - 1) ∈ R}
Df = R
Df = (-~, ~)
3)
Df = {x ∈ R | √2x - 6 ∈ R}
Df = {x ∈ R | 2x - 6 ≥ 0}
Df = {x ∈ R | 2x ≥ 6}
Df = {x ∈ R | x ≥ 6/2}
Df = {x ∈ R | x ≥ 3}
Df = {x | x ≥ 3, x ∈ R}
Df = [3, ~)
4)
Df = {x ∈ R | 1/(3x + 9) ∈ R}
Df = {x ∈ R | 3x + 9 ≠ 0}
Df = {x ∈ R | 3x ≠ -9}
Df = {x ∈ R | x ≠ -9/3}
Df = {x ∈ R | x ≠ -3}
Df = R - {-3}
Df = {x | -~ < x < -3, dan -3 < x < ~, x ∈ R}
Df = (-~, -3) U (-3, ~)
5)
Df = {x ∈ R | 1/(√8-2x) ∈ R}
Df = {x ∈ R | 8 - 2x > 0 }
Df = {x ∈ R | -2x > -8
Df = {x ∈ R | 2x < 8}
Df = {x ∈ R | x < 8/2}
Df = {x ∈ R | x < 4}
Df = { x | x < 4, x ∈ R}
Df = (-~, 4)