x^3 + 7 x^2 - x - 7 = x^2 *(x + 7 ) - 1*( x + 7) = ( x + 7)*(x^2 - 1) =
= ( x + 7)*( x -1)*(x + 1)
x^2 + 6x - 7 =( x + 7)*( x - 1)
bo
delta = 6^2 - 4*1*(-7) = 36 + 28 = 64
p( delty) \ 8
x1 = [ -6 - 8]/2 = - 14/2 = - 7
x2 = [ - 6 + 8]/2 = 2/2 = 1
Mamy więc
[ x^3 + 7 x^2 - x - 7 ] / [ x^2 + 6 x - 7 ] =
= [ ( x + 7)*( x -1)*(x + 1)] /[ ( x + 7)*( x - 1)] = x + 1
dla x różnego od - 7 i x różnego od 1
=============================================
x³+7x²-x-7
szukamy podzielnikow wyrazu wolnego i sprawdzamy, dla ktorego przyjmuje wartosc 0
(x³+7x²-x-7):(x-1)=x²+8x+7
x²+8x+7=0
Δ=64-28=36
√Δ=6
x 1=(-8-6)/2=-7
x 2=(-8+6)/2=-1
Rozkladamy mianownik
x²+6x-7=0
Δ=36-4·(-7)
Δ=64
√Δ=8
x 1=(-6-8)/2=-7
x 2=(-6+8)/2=1
(x-1)(x+7)(x+1)
-----------------------------------------=x+1
(x+7)(x-1)
zalozenie x≠1, x≠-7
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
x^3 + 7 x^2 - x - 7 = x^2 *(x + 7 ) - 1*( x + 7) = ( x + 7)*(x^2 - 1) =
= ( x + 7)*( x -1)*(x + 1)
x^2 + 6x - 7 =( x + 7)*( x - 1)
bo
delta = 6^2 - 4*1*(-7) = 36 + 28 = 64
p( delty) \ 8
x1 = [ -6 - 8]/2 = - 14/2 = - 7
x2 = [ - 6 + 8]/2 = 2/2 = 1
Mamy więc
[ x^3 + 7 x^2 - x - 7 ] / [ x^2 + 6 x - 7 ] =
= [ ( x + 7)*( x -1)*(x + 1)] /[ ( x + 7)*( x - 1)] = x + 1
dla x różnego od - 7 i x różnego od 1
=============================================
x³+7x²-x-7
szukamy podzielnikow wyrazu wolnego i sprawdzamy, dla ktorego przyjmuje wartosc 0
(x³+7x²-x-7):(x-1)=x²+8x+7
x²+8x+7=0
Δ=64-28=36
√Δ=6
x 1=(-8-6)/2=-7
x 2=(-8+6)/2=-1
Rozkladamy mianownik
x²+6x-7=0
Δ=36-4·(-7)
Δ=64
√Δ=8
x 1=(-6-8)/2=-7
x 2=(-6+8)/2=1
(x-1)(x+7)(x+1)
-----------------------------------------=x+1
(x+7)(x-1)
zalozenie x≠1, x≠-7