rozwiaz nierownosc
3-10x+30
uzasadnij ze jesli a+b=1 i a do kwadratu +b do kwadratu=7, to a do czwartej+ b do czwartej=31
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
z.2
a + b = 1
a^2 + b^2 = 7
------------------
Mamy
( a^2 + b^2)^2 = a^4 + b^4 + 2 *a^2* b^2
czyli
a^4 + b^4 = ( a^2 + b^2)^2 - 2*(a *b)^2
==================================
oraz
( a + b)^2 = a^2 + b^2 + 2 a*b
Po podstawieniu mamy
1^2 = 7 + 2 a*b ==> 2 a*b = - 6
a*b = - 3
------------
zatem
a^4 + b^4 = 7^2 -2*( - 3)^2 = 49 - 2*9 = 49 - 18 = 31
==============================================
z.1
3 x^2 - 10 x + 3 < = 0
delta = (-10)^2 - 4*3*3 = 100 - 36 = 64
p(delty) = 8
x1 = [ 10 - 8]/6 = 1/3
x2 = [ 10 + 8]/6 = 3
Ponieważ a = 3 > 0, zatem ramiona paraboli skierowane są ku górze
czyli
3 x^2 - 10 x + 3 < = 0 <=> x należy do < 1/3 ; 3 >
===================================================