Rozwiąż układy równań metoda przeciwnych współczyników
a)
[2x+y=0
[-2x+3y=-8
b)
[3x+2y=12
[-2x+y=-1
c) [2x+3y=-5
[3x+4y=+6
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a)
[2x+y=0
[-2x+3y=-8
2x oraz -2x skrócą się
------------------------
+
4y=-8/4
y=-2
2x+y=0
2x-2=0
2x=2/2
x=1
x=1
y=-2
b)
[3x+2y=12
[-2x+y=-1/*(-2)
[3x+2y=12
[4x-2y=2
2y oraz -2y skrócą się
--------------------------
+
7x=14/7
x=2
3x+2y=12
6+2y=12
2y=6/2
y=3
x=2
y=3
c)
[2x+3y=-5/*-4
[3x+4y=6 ?*3
[-8x-12y=20
[9x+12y=18
12y i -12y skrócą się
------------------------
+
x=28
2x+3y=-5
56+3y=-5
3y=-5-56=-61/3
y=-61/3
a)
y+3y=0-8
4y=-8 |:4
y=-2
2x=-y=2 |:2
b)
7x=14 |:7
x=2
y=-1+2x=-1+4=3
c)
-y=27 | :(-1)
y=-27
2x=-5-3y=-5+81=76 |:2