Rozwiąż równanie:
Znajdź wartość wielomianu W(x) dla podanych zmiwnnych x:
a)W(x)=
b)
1.
-2x⁴ + 4x³ + 6x² = 0
x²(-2x² + 4x + 6) = 0
x² = 0
x = 0
lub
-2x² + 4x + 6 = 0 /:(-2)
x² - 2x - 3 = 0
Δ = b² - 4ac = 4 + 12 = 16
√Δ = 4
x₁ = (-b-√Δ)/2a = (2-4)/2 = -1
x₂ = (-b+√Δ)/2a = (2+4)/2 = 3
x ∈ {-1; 0; 3}
2.
a)
W(x) = x³ - 2x² + 4x, dla x = -2√3
W(-2√3) = (-2√3)³ - 2(-2√3)² + 4(-2√3) = -8·3√3 - 2·4·3 - 8√3 = -24√3 - 8√3 - 24 = -32√3 - 24
W(x) = -2x³ + x² - 3x, dla x = -√10
W(-√10) = -2(-√10)³ + (-√10)² - 3(-√10) = -2(-10√10) + 10 + 3√10 = 20√10 + 3√10 + 10 =
= 23√10 + 10
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1.
-2x⁴ + 4x³ + 6x² = 0
x²(-2x² + 4x + 6) = 0
x² = 0
x = 0
lub
-2x² + 4x + 6 = 0 /:(-2)
x² - 2x - 3 = 0
Δ = b² - 4ac = 4 + 12 = 16
√Δ = 4
x₁ = (-b-√Δ)/2a = (2-4)/2 = -1
x₂ = (-b+√Δ)/2a = (2+4)/2 = 3
x ∈ {-1; 0; 3}
2.
a)
W(x) = x³ - 2x² + 4x, dla x = -2√3
W(-2√3) = (-2√3)³ - 2(-2√3)² + 4(-2√3) = -8·3√3 - 2·4·3 - 8√3 = -24√3 - 8√3 - 24 = -32√3 - 24
b)
W(x) = -2x³ + x² - 3x, dla x = -√10
W(-√10) = -2(-√10)³ + (-√10)² - 3(-√10) = -2(-10√10) + 10 + 3√10 = 20√10 + 3√10 + 10 =
= 23√10 + 10