Rozwiąż równanielog₂(x+1) +log₂(x-7) = 7log₂(x-7) +log₂(x+5) = 0
log 2 [ x + 1] + log 2 [ x - 7 ] = 7
założenie: x + 1 > 0 ^ x - 7 > 0
log 2 [( x +1)*(x -7)] = 7
log 2 [ x^2 - 7x + x - 7 ] = log 2 [ 128 ]
x^2 - 6x - 7 = 128
x^2 - 6x - 135 = 0
-------------------------
delta = (-6)^2 - 4*1*(-135) = 36 + 540 = 576
p(delty) = 24
x = [ 6 - 24]/2 = - 18/2 = - 9 <- nie spełnia założenia
lub
x = [ 6 + 24]/2 = 30/2 = 15
Odp. x = 15
=========================
log 2 [ x - 7 ] + log 2 [ x + 5 ] = 0
założenia: x - 7 > 0 ^ x + 5 > 0
log 2 [ ( x -7)*( x + 5)] = 0
log 2 [ x^2 + 5x - 7x - 35 ] = log 2 [ 1 ]
x^2 - 2x - 35 = 1
x^2 - 2x - 36 = 0
delta = (-2)^2 - 4*1*( -36) = 4 + 144 = 148 = 4*37
p(delty) = 2 p(37)
x = [ 2 - 2 p(37)]/2 = 1 - p(37) < 0 - odpada
x = [ 2 + 2 p(37)]/2 = 1 + p(37) > 7
Odp. x = 1 + p(37)
========================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
log 2 [ x + 1] + log 2 [ x - 7 ] = 7
założenie: x + 1 > 0 ^ x - 7 > 0
log 2 [( x +1)*(x -7)] = 7
log 2 [ x^2 - 7x + x - 7 ] = log 2 [ 128 ]
x^2 - 6x - 7 = 128
x^2 - 6x - 135 = 0
-------------------------
delta = (-6)^2 - 4*1*(-135) = 36 + 540 = 576
p(delty) = 24
x = [ 6 - 24]/2 = - 18/2 = - 9 <- nie spełnia założenia
lub
x = [ 6 + 24]/2 = 30/2 = 15
Odp. x = 15
=========================
log 2 [ x - 7 ] + log 2 [ x + 5 ] = 0
założenia: x - 7 > 0 ^ x + 5 > 0
log 2 [ ( x -7)*( x + 5)] = 0
log 2 [ x^2 + 5x - 7x - 35 ] = log 2 [ 1 ]
x^2 - 2x - 35 = 1
x^2 - 2x - 36 = 0
delta = (-2)^2 - 4*1*( -36) = 4 + 144 = 148 = 4*37
p(delty) = 2 p(37)
x = [ 2 - 2 p(37)]/2 = 1 - p(37) < 0 - odpada
lub
x = [ 2 + 2 p(37)]/2 = 1 + p(37) > 7
Odp. x = 1 + p(37)
========================