Rozwiąż równanie:
x ≠ 2 i x ≠ - 2
[ (3x - 5) + (x² - 4) ] / (x² - 4) = [ (2x - 1 - (x - 2) ] / (x - 2)
[ 3x - 5 + x² - 4 ] / (x² - 4) = [ 2x - 1 - x + 2 ] / (x - 2)
(x² + 3x - 9) / (x² - 4) = (x + 1) / (x - 2)
(x² + 3x - 9) / [ (x - 2)(x + 2)] = [(x + 1)(x + 2) ] / [(x - 2)(x + 2)]
x² + 3x - 9 = (x + 1)(x + 2)
x² + 3x - 9 = x² + 2x + x + 2
3x - 9 = 3x + 2
3x - 3x = 2 + 9
0 = 11 (fałsz)
Równanie nie posiada rozwiazania.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
x ≠ 2 i x ≠ - 2
[ (3x - 5) + (x² - 4) ] / (x² - 4) = [ (2x - 1 - (x - 2) ] / (x - 2)
[ 3x - 5 + x² - 4 ] / (x² - 4) = [ 2x - 1 - x + 2 ] / (x - 2)
(x² + 3x - 9) / (x² - 4) = (x + 1) / (x - 2)
(x² + 3x - 9) / [ (x - 2)(x + 2)] = [(x + 1)(x + 2) ] / [(x - 2)(x + 2)]
x² + 3x - 9 = (x + 1)(x + 2)
x² + 3x - 9 = x² + 2x + x + 2
3x - 9 = 3x + 2
3x - 3x = 2 + 9
0 = 11 (fałsz)
Równanie nie posiada rozwiazania.