Rozwiąż równanie
2^1 * 2^3 * 2^5 * ...... * 2^(2x - 1) = 64 * 4^(x + 1)
2^(1 + 3 + 5 + ...... + 2x -1) = 2^6 * (2^2)^(x +1)
2^(1 + 3 + 5 + ...... + 2x -1) = 2^6 * 2^(2x +2)
2^(1 + 3 + 5 + ...... + 2x -1) = 2^(6 + 2x +2)
1 + 3 + 5 + ...... + 2x -1 = 8 + 2x
1, 3, 5, ......., 2x - 1 ------- ciąg arytmetyczny
r = 3 - 1 = 2
r = 5 - 3 = 2
an = a1 + (n - 1) * r
2x - 1 = 1 + (n - 1) * 2
2x - 1 = 1 + 2n - 2
2x - 1 = 2n - 1
2x - 1 + 1 = 2n
2n = 2x
n = x -------- tyle mamy wyrazów w tym ciągu
Sn = [ (a1 + an) / 2 ] * n = [ (1 + 2x - 1) / 2 ] * x = [ 2x / 2 ] * x = x * x = x²
x² = 8 + 2x
x² - 2x - 8 = 0
Δ = (-2)² - 4 * 1 * (-8) = 4 + 32 = 36
√Δ = 6
x1 = (2 - 6)/2 = -4/2 = -2
x2 = (2 + 6)/2 = 8/2 = 4
odp. x = 4
mnozenie poteg o tej samej podst to dodawanie wykladnikow zatem
mamy
2^(1+3+5+...+2x-1)= 4³·4^(x+1) (*)
wyrazenie : 1+3+5+...+2x-1 to suma ciagu arytmetycznego
a₁=1, r=2 an=2x-1
an=a₁+(n-1)r
2x-1=1+(n-1)2
2x-1=1+2n-2
2x-1=2n-1
n=x
x∈N
Sn=(a₁+an)n
2
1+3+5+...+2x-1 = (1+2x-1)x = x²
podstawiajac do (*)
2^(x²)=4^(3+x+1)
2^(x²)=(2²)^(4+x) "potega potegi to mnozenie wykladnikow"
2^(x²)=2^(8+2x)
z roznowart f wykladniczej
x²=8+2x
x²-2x-8=0
a=1 b= -2 c= -8
Δ=4-4·1(-8)=4+32=36,√Δ=6
x₁=(2+6)/2=8/2=4
x₂=(2-6)/2= -4/2= -2∉N
x= 4
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
2^1 * 2^3 * 2^5 * ...... * 2^(2x - 1) = 64 * 4^(x + 1)
2^(1 + 3 + 5 + ...... + 2x -1) = 2^6 * (2^2)^(x +1)
2^(1 + 3 + 5 + ...... + 2x -1) = 2^6 * 2^(2x +2)
2^(1 + 3 + 5 + ...... + 2x -1) = 2^(6 + 2x +2)
1 + 3 + 5 + ...... + 2x -1 = 8 + 2x
1, 3, 5, ......., 2x - 1 ------- ciąg arytmetyczny
r = 3 - 1 = 2
r = 5 - 3 = 2
an = a1 + (n - 1) * r
2x - 1 = 1 + (n - 1) * 2
2x - 1 = 1 + 2n - 2
2x - 1 = 2n - 1
2x - 1 + 1 = 2n
2n = 2x
n = x -------- tyle mamy wyrazów w tym ciągu
Sn = [ (a1 + an) / 2 ] * n = [ (1 + 2x - 1) / 2 ] * x = [ 2x / 2 ] * x = x * x = x²
1 + 3 + 5 + ...... + 2x -1 = 8 + 2x
x² = 8 + 2x
x² - 2x - 8 = 0
Δ = (-2)² - 4 * 1 * (-8) = 4 + 32 = 36
√Δ = 6
x1 = (2 - 6)/2 = -4/2 = -2
x2 = (2 + 6)/2 = 8/2 = 4
odp. x = 4
mnozenie poteg o tej samej podst to dodawanie wykladnikow zatem
mamy
2^(1+3+5+...+2x-1)= 4³·4^(x+1) (*)
wyrazenie : 1+3+5+...+2x-1 to suma ciagu arytmetycznego
a₁=1, r=2 an=2x-1
an=a₁+(n-1)r
2x-1=1+(n-1)2
2x-1=1+2n-2
2x-1=2n-1
n=x
x∈N
Sn=(a₁+an)n
2
1+3+5+...+2x-1 = (1+2x-1)x = x²
2
podstawiajac do (*)
2^(x²)=4^(3+x+1)
2^(x²)=(2²)^(4+x) "potega potegi to mnozenie wykladnikow"
2^(x²)=2^(8+2x)
z roznowart f wykladniczej
x²=8+2x
x²-2x-8=0
a=1 b= -2 c= -8
Δ=4-4·1(-8)=4+32=36,√Δ=6
x₁=(2+6)/2=8/2=4
x₂=(2-6)/2= -4/2= -2∉N
x= 4