Rozwiąż równanie:
Proszę!
a) (x^2-9)^2-4=0
(wynik: -pierw.z 7, pierw. z 7, - pierw. z 11, pierw. z 11)
b) -2x^3-2x+4=0
(wynik: 1)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a)
(x^2-9)^2-4=0
(x^2-9)^2-2^2=0
(x^2 - 9 - 2)(x^2 - 9 + 2) = 0
(x^2 - 11)(x^2 - 7) = 0
(x - √11)(x +√11)(x - √7)(x + √7) = 0
x - √11 = 0 lub x + √11 = 0 lub x - √7 = 0 lub x + √7 = 0
x = √11 lub x = -√11 lub x = √7 lub x = -√7
b)
-2x^3 - 2x + 4 = 0
-2x^3 + 2x - 4x + 4 = 0
-2x(x^2 - 1) - 4(x - 1) = 0
-2x(x - 1)(x + 1) - 4(x - 1) = 0
(x - 1)[-2x(x + 1) - 4] = 0
x - 1 = 0 lub -2x^2 - 2x - 4 = 0
x = 1 lub Δ = 4 - 32 = - 28 < 0
odp. x = 1