Rozwiąż równania
1.
a) (x-1)³+(2x+3)³=27x³+8
b) (x²-5x+7)²-(x-2)(x-3)=1
c) (x+1)(x²+2)+(x+2)(x²+1)=2
d) (x²+2x)²-(x+1)²=55
2.
x⁷-5x⁵+4x³=0
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1 a)
(x - 1)³+(2x + 3)³ = 27x³ + 8
(x - 1)³+(2x + 3)³ = (3x)³+ 2³
(x-1+2x+3)[(x-1 )² - (x-1)(2x+3) + (2x+3)²] = (3x+2)[(3x)²- 3x·2 + 2²]
(3x+2)[x²-2x+1 - (2x²+3x-2x-3) + 4x²+12x+9] = (3x+2)(9x²-6x+4)
(3x+2)[x²-2x+1 - (2x²+x-3) + 4x²+12x+9] = (3x+2)(9x²-6x+4)
(3x+2)(x²-2x+1-2x²-x+3+4x²+12x+9) = (3x+2)(9x²-6x+4)
(3x+2)(3x²+9x+13) = (3x+2)(9x²-6x+4) /:(3x+2)
3x²+9x+13 = 9x²-6x+4
3x²+9x+13-9x²+6x-4=0
-6x²+15x+9=0 /:(-3)
2x²-5x-3=0
Δ = 25+24=49; √Δ=7
Odp. x₁ = -½ i x₂ = 3
II sposób
(x - 1)³+(2x + 3)³ = 27x³ + 8
(x - 1)³+(2x + 3)³ = (3x)³+ 2³ lub (x - 1)³+(2x + 3)³= 2³ + (3x)³
Zatem
(x - 1)³+(2x + 3)³=(3x)³+ 2³
x - 1 = 3x i 2x + 3 = 2
x - 3x = 1 i 2x = 2 - 3
-2x - 1 /:(-2) i 2x = - 1 /:2
x = -½ i x = -½ czyli x = -½
(x - 1)³+(2x + 3)³= 2³ + (3x)³
x - 1 = 2 i 2x + 3 = 3x
x = 2+1 i 2x-3x = -3
x = 3 i -x = -3 /·(-1)
x = 3 i x = 3, czyli x = 3
Odp. x₁ = -½ i x₂ = 3
1 b)
(x²-5x+7)² - (x-2)(x-3) = 1
(x²-5x+7)² = 1 + (x-2)(x-3)
(x²-5x+7)² = 1+x²-3x-2x+6
(x²-5x+7)² = x²-5x+7 /:(x²-5x+7)
x²-5x+7 = 1
x²-5x+7-1 = 0
x²-5x+6 = 0
Δ = 25 - 24 = 1; √Δ = 1
Odp. x₁ = 2 i x₂ = 3
II sposób
(x²-5x+7)² - (x-2)(x-3) = 1
(x²-5x+7)² - 1 - (x-2)(x-3) = 0
(x²-5x+7)² - 1² - (x-2)(x-3) = 0
Możemy skorzystać ze wzoru a² - b² = (a - b)(a+b)
(x²-5x+7 - 1)(x²-5x+7) - (x-2)(x-3) = 0
(x²-5x+6)(x²-5x+7) - (x-2)(x-3) = 0
Teraz x²+5x+6 rozkładamy na czynniki ze wzoru na postać iloczynową: a²+bx+c = a(x-x₁)(x-x₂)
x²-5x+6 = 0
Δ = 25 - 24 = 1; √Δ = 1
x²-5x+6 = (x-2)(x-3)
Zatem
(x-2)(x-3)(x²-5x+7) - (x-2)(x-3) = 0
(x-2)(x-3)[(x²-5x+7 - 1] = 0
(x-2)(-3)(x²-5x+6) = 0
(x-2)(x-3)(x-2)(x-3) = 0
(x-2)²(x-3)² = 0
(x-2)² = 0 v (x-3)² = 0
x - 2 = 0 v x - 3 = 0
x = 2 v x = 3
Odp. x₁ = 2 i x₂ = 3
1 c)
(x+1)(x²+2)+(x+2)(x²+1) = 2
x³+2x+x²+2+x³+x+2x²+2-2 = 0
2x³+3x²+3x+2=0
2x³+2x²+x²+x+2x+2=0
2x²(x+1) + x(x+1) + 2(x+1) = 0
(x+1)(2x²+x+2) = 0
x+1 = 0 v 2x²+x+2=0
x+1 = 0
x = -1
2x²+x+2=0
Δ = 1-16 = -15 < 0 ⇒ równanie nie ma rozwiązań
Odp. x = -1
1 d)
(x²+2x)²-(x+1)² = 55
x⁴+4x³+4x²-x²-2x-1-55 = 0
x⁴+4x³+3x²-2x-56 = 0
x⁴+4x³+3x²+12x-14x-56 = 0
x³(x+4)+3x(x+4)-14(x+4) = 0
(x+4)(x³+3x-14) = 0
(x+4)(x³-2x²+2x²-4x+7x-14) = 0
(x+4)[x²(x-2)+2x(x-2)+7(x-2)] = 0
(x+4)[(x-2)(x²+2x+7)] = 0
(x+4)(x-2)(x²+2x+7) = 0
x+4 = 0 v x-2 = 0 v x²+2x+7 = 0
x+4 = 0
x = -4
x-2 = 0
x = 2
x²+2x+7 = 0
Δ = 4 - 28 = - 24 < 0 ⇒ równanie nie ma rozwiązań
Odp. x₁ = -4 i x₂ = 2
II sposób
(x²+2x)²-(x+1)² = 55
(x²+2x)²-(x+1)² = 64 - 9
(x²+2x)²-(x+1)² = 8² - 3³
(x²+2x)²-(x+1)² = 8² - 3³
x²+ 2x = 8 i x+1 = 3 lub x+ 1 = - 3
x²+ 2x - 8 = 0
Δ = 4 + 32 = 36; √Δ = 6
x+1 = 3
x = 3-1
x = 2
x + 1 = - 3
x = -3-1
x = -4
Odp. x₁ = -4 i x₂ = 2
Zad. 2
x⁷-5x⁵+4x³=0
x³(x⁴ - 5x² + 4) = 0
x³ = 0 v x⁴ - 5x² + 4 = 0
x³ = 0
x = 0
x⁴ - 5x² + 4 = 0
x² = t
t² - 5t + 4 = 0
Δ = 25 - 16 = 9; √Δ = 3
t₁ = 1
x² = 1
x = 1 v x = -1
t₂ = 4
x² = 4
x = 2 v x = -2
Odp. x₁ = 0, x₂ = 1, x₃ = -1, x₄ = 2, x₅ = -2