3=|x|+|y| 3=2|x|+y - to jest układ równań to jest naprawdę bardzo trudne jak ktoś nie ma pojęcia to niech nie robi proszę o przykłady zrobione krok po kroku wybiorę najlepszą tylko musi być dobrze z góry dzięki
dosias
|x-3|< x+3 |x-3|-x<3 w wartości bezwzględnej zeruje się w 3 a poza wartościa bezwzględną 0 więc bierzemy pod uwagę przedziały 1.( - nieskończoności do 0) jeśli dodamy liczbę z tego przedziału to wynik w wartości bezwzglednej wyjdzie ujemny więc zmieniamy znak -x+3+x<3 -2x<0 x>0 nie należy do przedziału ( - nieskończoności do 0) 2.< od 0 do3) jeśli dodamy liczbę z tego przedziału to wynik w wartości bezwzglednej wyjdzie ujemny więc zmieniamy znak -x+3-x<3 -3x<0 x>0należy do przedziału ( od 0 do3) 3.< od 3 do + nieskończoności)jeśli dodamy liczbę z tego przedziału to wynik w wartości bezwzglednej wyjdzie dodatni więc nie zmieniamy znaku x-3-x<3 -3<3 x- nalezy do zbioru pustego <3 do + nieskończoności) x nalezy od zera do + nieskończoności
x-2|x-4|<2 - tego nie za bardzo wiem jak zrobic
||x-3|-3|<2 |x-3|-3<2 i |x-3|-3> -2 |x-3|<5 i |x-3|>1 x-3<5i x-3>-5 i x-3>1 i x-3<-1 x<8i x>-2 x>4 i x<2 x należy do przedziału od(-2,8) x należy do przedziału od(- nieskończoności do -2) suma(od 4 do + nieskończoności) x należy ( od - nieskończoności do2) suma( od 4 do + nieskończoności)
||x-1|-2|>1 |x-1|>3 lub |x-1|<1 x-1>3 ix-1<-3 lub x-1<1 i x-1>-1 x>4ix<-2 lub x<2i x>0 x należy(- nieskończoności do -2) x należy(0 do2) suma(4 do + nieskończoności) x nalezy (- nieskończoności do -2) suma(0 do2) suma(4 do + nieskończoności) |x+1|+2|x-1|=5 |x+1|+|2x-2|=5 Przedziały 1. ( - nieskończoność do -1) -x-1-2x+2=5 -3x=6 x=-2 należy do przedziału ( - nieskończoność do -1) więc jest rozwiązaniem 2.<-1,1) x+1-2x+2=5 x=2 nie należy do przedziału <-1,1) więc nie jest rozwiązaniem 3.<1 do + nieskończoności) x+1+2x-2=5 3x=6 x=2należy do przedziału <1 do + nieskończoności) więc jest rozwiązaniem Rozwiązanie: x=2 lub x=-2
|3+x|+|x-3|>-1 Przedziały 1.( - nieskończoność do -3) -3-x-x+3>-1 -2x>-1 x<½ x nalezy(- nieskończoność do -3) 2.( -3 do 3) 3+x-x+3>-1 6>-1x należy do zbioru pustego ( -3 do 3) 3.( od 3 do + nieskończoności) 3+x+x-3>-1 2x>-1 x>-½ x należy(od 3 do + nieskończoności) Rozwiazaniem jest cały zbiór liczb rzeczywistych
|x-3|-x<3
w wartości bezwzględnej zeruje się w 3 a poza wartościa bezwzględną 0 więc bierzemy pod uwagę przedziały
1.( - nieskończoności do 0) jeśli dodamy liczbę z tego przedziału to wynik w wartości bezwzglednej wyjdzie ujemny więc zmieniamy znak
-x+3+x<3
-2x<0
x>0 nie należy do przedziału ( - nieskończoności do 0)
2.< od 0 do3) jeśli dodamy liczbę z tego przedziału to wynik w wartości bezwzglednej wyjdzie ujemny więc zmieniamy znak
-x+3-x<3
-3x<0
x>0należy do przedziału ( od 0 do3)
3.< od 3 do + nieskończoności)jeśli dodamy liczbę z tego przedziału to wynik w wartości bezwzglednej wyjdzie dodatni więc nie zmieniamy znaku
x-3-x<3
-3<3 x- nalezy do zbioru pustego <3 do + nieskończoności)
x nalezy od zera do + nieskończoności
x-2|x-4|<2 - tego nie za bardzo wiem jak zrobic
||x-3|-3|<2
|x-3|-3<2 i |x-3|-3> -2
|x-3|<5 i |x-3|>1
x-3<5i x-3>-5 i x-3>1 i x-3<-1
x<8i x>-2 x>4 i x<2
x należy do przedziału od(-2,8) x należy do przedziału od(- nieskończoności do -2) suma(od 4 do + nieskończoności)
x należy ( od - nieskończoności do2) suma( od 4 do + nieskończoności)
||x-1|-2|>1
|x-1|>3 lub |x-1|<1
x-1>3 ix-1<-3 lub x-1<1 i x-1>-1
x>4ix<-2 lub x<2i x>0
x należy(- nieskończoności do -2) x należy(0 do2)
suma(4 do + nieskończoności)
x nalezy (- nieskończoności do -2) suma(0 do2) suma(4 do + nieskończoności)
|x+1|+2|x-1|=5
|x+1|+|2x-2|=5
Przedziały
1. ( - nieskończoność do -1)
-x-1-2x+2=5
-3x=6
x=-2 należy do przedziału ( - nieskończoność do -1) więc jest rozwiązaniem
2.<-1,1)
x+1-2x+2=5
x=2 nie należy do przedziału <-1,1) więc nie jest rozwiązaniem
3.<1 do + nieskończoności)
x+1+2x-2=5
3x=6
x=2należy do przedziału <1 do + nieskończoności) więc jest rozwiązaniem
Rozwiązanie: x=2 lub x=-2
|3+x|+|x-3|>-1
Przedziały
1.( - nieskończoność do -3)
-3-x-x+3>-1
-2x>-1
x<½ x nalezy(- nieskończoność do -3)
2.( -3 do 3)
3+x-x+3>-1
6>-1x należy do zbioru pustego ( -3 do 3)
3.( od 3 do + nieskończoności)
3+x+x-3>-1
2x>-1
x>-½ x należy(od 3 do + nieskończoności)
Rozwiazaniem jest cały zbiór liczb rzeczywistych