rozwiąż nierówności :
a) (X+4)²-(X+1)² ≥ 4(x-1)
b) (x-2)²-(X+5)(x-5)>-4(X+5)
c) 4 (x-1)(X+1)-(2x-1)²>3
a) (x+4)²-(x+1)² ≥ 4(x-1)
x²+8x+16-(x²+2x+1)≥4x-4
x²+8x+16-x²-2x-1≥4x-4
2x≥-19 /:2
x≥-19/2
x≥-9i1/2
b) (x-2)²-(x+5)(x-5)>-4(x+5)
x²-4x+4-(x²-25)>-4x-20
x²-4x+4-x²+25>-4x-20
0x>-49
x>0
c) 4 (x-1)(x+1)-(2x-1)²>3
4(x²-1)-(4x²-4x+1)>3
4x²-4-4x²+4x-1>3
4x>8 /:4
x>2
a)
(x+4)²-(x+1)² ≥ 4(x-1)
x²+2*4*x+4²-(x²+2*x*1+1²)≥ 4x-4
x²+8x+16-(x²+2x+1)≥ 4x-4
x²+8x+16-x²-2x-1≥ 4x-4
8x-2x-4x≥-4+1-16
x≥-9,5
b)
(x-2)²-(x+5)(x-5)> -4(x+5)
(x²-2*x*2+2²)-(x²-5x+5x-25)> -4x-20
(x²-2*x*2+2²)-(x²-25)> -4x-20
(x²-4x+4)-x²+25> -4x-20
x²-4x+4-x²+25> -4x-20
-4x+4x>-20-4-25
c)
4(x-1)(x+1)-(2x-1)²>3
4(x²+x-x-1)-[(2x)²-2*2x*1+1²]>3
4(x²+x-x-1)-(4x²-4x+1)>3
4(x²-1)-4x²+4x-1>3
4x>3+1+4
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a) (x+4)²-(x+1)² ≥ 4(x-1)
x²+8x+16-(x²+2x+1)≥4x-4
x²+8x+16-x²-2x-1≥4x-4
2x≥-19 /:2
x≥-19/2
x≥-9i1/2
b) (x-2)²-(x+5)(x-5)>-4(x+5)
x²-4x+4-(x²-25)>-4x-20
x²-4x+4-x²+25>-4x-20
0x>-49
x>0
c) 4 (x-1)(x+1)-(2x-1)²>3
4(x²-1)-(4x²-4x+1)>3
4x²-4-4x²+4x-1>3
4x>8 /:4
x>2
a)
(x+4)²-(x+1)² ≥ 4(x-1)
x²+2*4*x+4²-(x²+2*x*1+1²)≥ 4x-4
x²+8x+16-(x²+2x+1)≥ 4x-4
x²+8x+16-x²-2x-1≥ 4x-4
8x-2x-4x≥-4+1-16
2x≥-19 /:2
x≥-9,5
b)
(x-2)²-(x+5)(x-5)> -4(x+5)
(x²-2*x*2+2²)-(x²-5x+5x-25)> -4x-20
(x²-2*x*2+2²)-(x²-25)> -4x-20
(x²-4x+4)-x²+25> -4x-20
x²-4x+4-x²+25> -4x-20
-4x+4x>-20-4-25
0x>-49
x>0
c)
4(x-1)(x+1)-(2x-1)²>3
4(x²+x-x-1)-[(2x)²-2*2x*1+1²]>3
4(x²+x-x-1)-(4x²-4x+1)>3
4(x²-1)-4x²+4x-1>3
4x²-4-4x²+4x-1>3
4x>3+1+4
4x>8 /:4
x>2