rozłóż wieloman na czynniki możliwie najniższego stopnia:a) W(x)=12x⁴+12x₃+3x²
b) W(x)=4x⁴-(x-1)²
a)
W(x)=12x⁴+12x³+3x²
W(x)=3x²(4x²+4x+1)
W(x)=3x²(2x+1)²
b)
W(x)=4x⁴-(x-1)²
W(x)=(2x²)²-(x-1)²
W(x)=(2x²+x-1)(2x²-x+1)
W(x)=2(x-0,5)(x+1)(2x²-x+1)
a) W(x)=12x⁴+12x³+3x²= 3x²(4x²+4x+1) = ze wzoru skroconego (a+b)²=a²+2ab+b²
= 3x²( 2x+1)²
b) W(x)=4x⁴-(x-1)² = ze wzoru a² -b²=(a-b)(a+b)
= (2x²)² - (x-1)² = (2x²-(x-1))(2x²+(x-1))= (2x² -x+1)(2x²+x -1)=
2x² -x+1
a=2 b= -1 c= 1
Δ=b²-4ac=1 -4·2=1-8= -7 nie rozklada sie
2x² +x-1
a=2 b= 1 c= -1
Δ=b²-4ac=1 +4·2=1+8=9,√Δ=3
x₁=(-b-√Δ)/2a=(-1-3)/4= -4/4= -1
x₂=(-b+√Δ)/2a=(-1+3)/4= 2/4= ½
2x² +x-1=2(x+1)(x-½)
podstawiamy
W(x)=(2x² -x+1)2(x+1)(x-½)=2(2x² -x+1)(x+1)(x-½)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
W(x)=12x⁴+12x³+3x²
W(x)=3x²(4x²+4x+1)
W(x)=3x²(2x+1)²
b)
W(x)=4x⁴-(x-1)²
W(x)=(2x²)²-(x-1)²
W(x)=(2x²+x-1)(2x²-x+1)
W(x)=2(x-0,5)(x+1)(2x²-x+1)
a) W(x)=12x⁴+12x³+3x²= 3x²(4x²+4x+1) = ze wzoru skroconego (a+b)²=a²+2ab+b²
= 3x²( 2x+1)²
b) W(x)=4x⁴-(x-1)² = ze wzoru a² -b²=(a-b)(a+b)
= (2x²)² - (x-1)² = (2x²-(x-1))(2x²+(x-1))= (2x² -x+1)(2x²+x -1)=
2x² -x+1
a=2 b= -1 c= 1
Δ=b²-4ac=1 -4·2=1-8= -7 nie rozklada sie
2x² +x-1
a=2 b= 1 c= -1
Δ=b²-4ac=1 +4·2=1+8=9,√Δ=3
x₁=(-b-√Δ)/2a=(-1-3)/4= -4/4= -1
x₂=(-b+√Δ)/2a=(-1+3)/4= 2/4= ½
2x² +x-1=2(x+1)(x-½)
podstawiamy
W(x)=(2x² -x+1)2(x+1)(x-½)=2(2x² -x+1)(x+1)(x-½)