Odpowiedź:
[tex]W(x) =x^5 + 7x^4 + 19 x^3 +25x^2 +16 x + 4 = \\= x^5+x^4+6 x^4 + 6 x^3 + 13x^3+13x^2 +12x^2 + 4 x + 4 =[/tex]
[tex]= x^4*(x + 1) + 6 x^3*(x + 1) + 13 x^2*(x + 1) + 12*(x + 1) + 4*(x + 1) =\\= ( x + 1)* ( x^4 + x^3 + 5 x^3 + 5 x^2 + 8 x^2 + 8 x + 4 x + 4 ) =\\= ( x + 1)*[ x^3*(x + 1) + 5 x^2*(x + 1) + 8x*(x + 1) + 4*(x + 1)] =\\= ( x + 1)*(x + 1)*[ x^3 + x^2 + 4 x^2 + 4 x + 4 x + 4 ] =\\= ( x + 1)*(x + 1)*[ x^2*( x + 1) + 4 x*(x + 1) + 4*( x + 1)] =\\= (x + 1)*(x + 1)*(x + 1)*[x^2 + 4 x + 4) = ( x + 1)^3*(x + 2)^2[/tex]
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]W(x) =x^5 + 7x^4 + 19 x^3 +25x^2 +16 x + 4 = \\= x^5+x^4+6 x^4 + 6 x^3 + 13x^3+13x^2 +12x^2 + 4 x + 4 =[/tex]
[tex]= x^4*(x + 1) + 6 x^3*(x + 1) + 13 x^2*(x + 1) + 12*(x + 1) + 4*(x + 1) =\\= ( x + 1)* ( x^4 + x^3 + 5 x^3 + 5 x^2 + 8 x^2 + 8 x + 4 x + 4 ) =\\= ( x + 1)*[ x^3*(x + 1) + 5 x^2*(x + 1) + 8x*(x + 1) + 4*(x + 1)] =\\= ( x + 1)*(x + 1)*[ x^3 + x^2 + 4 x^2 + 4 x + 4 x + 4 ] =\\= ( x + 1)*(x + 1)*[ x^2*( x + 1) + 4 x*(x + 1) + 4*( x + 1)] =\\= (x + 1)*(x + 1)*(x + 1)*[x^2 + 4 x + 4) = ( x + 1)^3*(x + 2)^2[/tex]
Szczegółowe wyjaśnienie: